The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group , the cochain extension is not a Galois...
Let G be a compact group and X a G-ANR. Then X is a G-AR iff the H-fixed point set is homotopy trivial for each closed subgroup H ⊂ G.
[For the entire collection see Zbl 0699.00032.] A manifold (M,g) is said to be generalized Einstein manifold if the following condition is satisfied
where S(X,Y) is the Ricci tensor of (M,g) and (X), (X) are certain -forms. In the present paper the author studies properties of conformal and geodesic mappings of generalized Einstein manifolds. He gives the local classification of generalized Einstein manifolds when g( (X), (X)).
Currently displaying 1 –
20 of
81