Page 1 Next

Displaying 1 – 20 of 682

Showing per page

A 2-category of chronological cobordisms and odd Khovanov homology

Krzysztof K. Putyra (2014)

Banach Center Publications

We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov...

A dimensional property of Cartesian product

Michael Levin (2013)

Fundamenta Mathematicae

We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.

A functional S-dual in a strong shape category

Friedrich Bauer (1997)

Fundamenta Mathematicae

In the S-category P (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual D X , X = ( X , n ) P , turns out to be of the same weak homotopy type as an appropriately defined functional dual ( S 0 ) X ¯ (Corollary 4.9). Sometimes the functional object X Y ¯ is of the same weak homotopy type as the “real” function space X Y (§5).

A geometric description of differential cohomology

Ulrich Bunke, Matthias Kreck, Thomas Schick (2010)

Annales mathématiques Blaise Pascal

In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in [4]. There the starting point was Quillen’s cobordism description of singular cobordism...

A homological selection theorem implying a division theorem for Q-manifolds

Taras Banakh, Robert Cauty (2007)

Banach Center Publications

We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and afterward...

A Nielsen theory for intersection numbers

Christopher McCord (1997)

Fundamenta Mathematicae

Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number. In particular,...

Currently displaying 1 – 20 of 682

Page 1 Next