Groupoids and crossed objects in algebraic topology.
Le but de cet article est d’analyser le statut de la géométrie dans quelques textes consacrés aux relations d’homologie, depuis les mémoires de Poincaré sur l’Analysis situs jusqu’au début des années 1930. Pour cela, nous introduisons la notion de « contenu géométrique » et nous montrons que ce contenu est présent dans les textes de Poincaré, de Veblen et d’Alexander, sans l’être cependant dans ceux d’autres auteurs (Vietoris, Čech). Par ailleurs, l’analyse de certaines distinctions introduites...
The present paper provides a test case for the significance of the historical category “structuralism” in the history of modern mathematics. We recapitulate the various approaches to the fundamental group present in Poincaré’s work and study how they were developed by the next generations in more “structuralist” manners. By contrasting this development with the late introduction and comparatively marginal use of the notion of fundamental groupoid and the even later consideration of equivalence relations...
This paper illustrates the themes of the title in terms of: van Kampen type theorems for the fundamental groupoid; holonomy and monodromy groupoids; and higher homotopy groupoids. Interaction with work of the writer is explored.
The aim of this article is to bring together various themes from fairly elementary homotopy theory and to examine them, in part, from a historical and philosophical viewpoint.