The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
190
A flag manifold of a compact semisimple Lie group is defined as a quotient where is the centralizer of a one-parameter subgroup of . Then can be identified with the adjoint orbit of in the Lie algebra of . Two flag manifolds and are equivalent if there exists an automorphism such that (equivalent manifolds need not be -diffeomorphic since is not assumed to be inner). In this article, explicit formulas for decompositions of the isotropy representation for all flag manifolds...
Let and be graded Lie algebras whose grading is in or , but only one of them. Suppose that is a derivatively knitted pair of representations for , i.e. and satisfy equations which look “derivatively knitted"; then , endowed with a suitable bracket, which mimics semidirect products on both sides, becomes a graded Lie algebra . This graded Lie algebra is called the knit product of and . The author investigates the general situation for any graded Lie subalgebras and of a graded...
Let a smooth finite-dimensional manifold and the manifold of geodesic arcs of a symmetric linear connection on . In a previous paper [Differential Geometry and Applications (Brno, 1995) 603-610 (1996; Zbl 0859.58011)] the author introduces and studies the Poisson manifolds of geodesic arcs, i.e. manifolds of geodesic arcs equipped with certain Poisson structure. In this paper the author obtains necessary and sufficient conditions for that a given Lagrange function generates a Poisson manifold...
Summary: The article is devoted to the question how to geometrically construct a 1-form on some non product preserving bundles by means of a 1-form on an original manifold . First, we will deal with liftings of 1-forms to higher-order cotangent bundles. Then, we will be concerned with liftings of 1-forms to the bundles which arise as a composition of the cotangent bundle with the tangent or cotangent bundle.
The author considers the Klein-Gordon equation for -dimensional flat spacetime. He is interested in those coordinate systems for which the equation is separable. These coordinate systems are explicitly known and generally do not cover the whole plane. The author constructs tensor fields which he can use to express the locus of points where the coordinates break down.
This paper deals with calculus which is an extension of finite operator calculus due to Rota, and leading results of Rota’s calculus are easily -extendable. The particular case is known to be relevant for quantum group investigations. It is shown here that such umbral calculus leads to infinitely many new -deformed quantum like oscillator algebra representations. The authors point to several references dealing with new applications of umbral and calculus in which new families of extensions...
Currently displaying 81 –
100 of
190