The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 313

Showing per page

Local limit theorems on some non unimodular groups.

Emile Le Page, Marc Peigné (1999)

Revista Matemática Iberoamericana

Let Gd be the semi-direct product of R*+ and Rd, d ≥ 1 and let us consider the product group Gd,N = Gd x RN, N ≥ 1. For a large class of probability measures μ on Gd,N, one prove that there exists ρ(μ) ∈ ]0,1] such that the sequence of finite measures{(n(N+3)/2 / ρ(μ)n) μ*n}n ≥ 1converges weakly to a non-degenerate measure.

Long time behavior of random walks on abelian groups

Alexander Bendikov, Barbara Bobikau (2010)

Colloquium Mathematicae

Let be a locally compact non-compact metric group. Assuming that is abelian we construct symmetric aperiodic random walks on with probabilities n ( S 2 n V ) of return to any neighborhood V of the neutral element decaying at infinity almost as fast as the exponential function n ↦ exp(-n). We also show that for some discrete groups , the decay of the function n ( S 2 n V ) can be made as slow as possible by choosing appropriate aperiodic random walks Sₙ on .

Currently displaying 121 – 140 of 313