The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a Gaussian random field in with stationary increments. For any Borel set , we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.
Multistable processes, that is, processes which are, at each “time”, tangent to a stable process, but where the index of stability varies along the path, have been recently introduced as models for phenomena where the intensity of jumps is non constant. In this work, we give further results on (multifractional) multistable processes related to their local structure. We show that, under certain conditions, the incremental moments display a scaling behaviour, and that the pointwise Hölder exponent...
Currently displaying 1 –
2 of
2