The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The L-decomposable and the bi-decomposable models are two families of distributions on the set of all permutations of the first positive integers. Both of these models are characterized by collections of conditional independence relations. We first compute a Markov basis for the L-decomposable model, then give partial results about the Markov basis of the bi-decomposable model. Using these Markov bases, we show that not all bi-decomposable distributions can be approximated arbitrarily well by...
We extend the definition of Markov operator in the sense of J. R. Brown and of earlier work of the authors to a setting appropriate to the study of n-copulas. Basic properties of this extension are studied.
Updating probabilities by information from only one hypothesis and thereby ignoring alternative hypotheses, is not only biased but leads to progressively imprecise conclusions. In psychology this phenomenon was studied in experiments with the “pseudodiagnosticity task”. In probability logic the phenomenon that additional premises increase the imprecision of a conclusion is known as “degradation”. The present contribution investigates degradation in the context of second order probability distributions....
We have intensified studies of reflections of copulas (that we introduced recently in [6]) and found that their convex combinations exhibit potentially useful fitting properties for original copulas of the Normal, Frank, Clayton and Gumbel types. We show that these properties enable us to construct interesting models for the relations between investment in stocks and gold.
It is proved that the solution of the multiplicative Cauchy functional equation on the Lorentz cone of dimension greater than two is a power function of the determinant. The equation is solved in full generality, i.e. no smoothness assumptions on the unknown function are imposed. Also the functional equation of ratios, of a similar nature, is solved in full generality.
In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint...
Building upon earlier work in which axioms were formulated for multivariate measures of concordance, we examine properties of such measures. In particular,we examine the relations between the measure of concordance of an n-copula and the measures of concordance of the copula’s marginals.
We define a multivariate negative binomial distribution (MVNB) as a bivariate Poisson distribution function mixed with a multivariate exponential (MVE) distribution. We focus on the class of MVNB distributions generated by Marshall-Olkin MVE distributions. For simplicity of notation we analyze in detail the class of bivariate (BVNB) distributions. In applications the standard data from [2] and [7] and data concerning parasites of birds from [4] are used.
Sea (X1, X2) un vector aleatorio con una función de distribución F. La transformación integral de la probabilidad (pit) es la variable aleatoria unidimensional P2 = F(X1, X2). La expresion de su función de distribución, y un algoritmo de simulación en términos de la función cuantil, dada por Chakak et al [2000], cuando la distribución es absolumente continua, son extendidas a distribuciones que pueden tener singularidades. La estimación de máxima verosimilitud del parámetro de dependencia basada...
Multivariate models frequently used in many branches of science have relatively large number of different structures. Sometimes the regularity condition which enable us to solve statistical problems are not satisfied and it is reasonable to recognize it in advance. In the paper the model without constraints on parameters is analyzed only, since the greatness of the class of such problems in general is out of the size of the paper.
Currently displaying 1 –
16 of
16