The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The cross-covariance matrix of observation vectors in two linear statistical models need not be zero matrix. In such a case the problem is to find explicit expressions for the best linear unbiased estimators of both model parameters and estimators of variance components in the simplest structure of the covariance matrix. Univariate and multivariate forms of linear models are dealt with.
In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters.
Letting P(u,x) denote the regularised incomplete gamma function, it is shown that for each α ≥ 0, P(x,x+α) decreases as x increases on the positive real semi-axis, and P(x,x+α) converges to 1/2 as x tends to infinity. The statistical significance of these results is explored.
In this paper, we consider a comparison problem of predictors in the context of linear mixed models. In particular, we assume a set of different seemingly unrelated linear mixed models (SULMMs) allowing correlations among random vectors across the models. Our aim is to establish a variety of equalities and inequalities for comparing covariance matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under SULMMs and their combined model. We use the matrix rank and inertia...
Some remarks to problems of point and interval estimation, testing and problems of outliers are presented in the case of multivariate regression model.
This paper deals with an application of regression analysis to the regulation of the blood-sugar under diabetes mellitus. Section 2 gives a description of Gram-Schmidt orthogonalization, while Section 3 discusses the difference between Gauss-Markov estimation and Least Squares Estimation. Section 4 is devoted to the statistical analysis of the blood-sugar during the night. The response change of blood-sugar is explained by three variables: time, food and physical activity ("Bewegung"). At the beginning...
High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators...
We establish preservation results for the stochastic comparison of multivariate random sums of stationary, not necessarily independent, sequences of nonnegative random variables. We consider convex-type orderings, i.e. convex, coordinatewise convex, upper orthant convex and directionally convex orderings. Our theorems generalize the well-known results for the stochastic ordering of random sums of independent random variables.
The aim of this paper is to establish a nonparametric estimate of some characteristics of the conditional distribution. Kernel type estimators for the conditional cumulative distribution function and for the successive derivatives of the conditional density of a scalar response variable Y given a Hilbertian random variable X are introduced when the observations are linked with a single-index structure. We establish the pointwise almost complete convergence and the uniform almost complete convergence...
Currently displaying 1 –
20 of
21