The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Sur une méthode itérative de résolution de problèmes aux limites elliptiques non linéaires

Moïse Sibony (1977)

Aplikace matematiky

Soit A un opérateur non nécessairement linéaire d’un Hilbert de l’équation A u = f , pour f donné dans ' . Nous étudions la convergence du schéma itératif suivant: u n + 1 = u n - ρ B - 1 ( A u n - f ) aou B est fonction d’un opérateur auto-adjoint S choisi de telle sorte que l’inversion de B soit immédiate numériquement. Par exemple B = [ I - ( I - ρ 0 S ) m ] - 1 S avec un entier m et une constante ρ 0 convenablement choisis. Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.

Currently displaying 21 – 31 of 31

Previous Page 2