Displaying 281 – 300 of 518

Showing per page

On the complexity of problems on simple games

Josep Freixas, Xavier Molinero, Martin Olsen, Maria Serna (2011)

RAIRO - Operations Research - Recherche Opérationnelle

Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes-no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand. Each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity analysis on problems defined on such families of games. This analysis as usual depends on the game representation...

On the complexity of problems on simple games

Josep Freixas, Xavier Molinero, Martin Olsen, Maria Serna (2012)

RAIRO - Operations Research

Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes-no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand. Each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity analysis on problems defined on such families of games....

On the Complexity of Reinforcement in Graphs

Nader Jafari Rad (2016)

Discussiones Mathematicae Graph Theory

We show that the decision problem for p-reinforcement, p-total rein- forcement, total restrained reinforcement, and k-rainbow reinforcement are NP-hard for bipartite graphs.

On the Complexity of the Hidden Weighted Bit Function for Various BDD Models

Beate Bollig, Martin Löbbing, Martin Sauerhoff, Ingo Wegener (2010)

RAIRO - Theoretical Informatics and Applications

Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various...

On the complexity of the Shapley-Scarf economy with several types of goods

Katarína Cechlárová (2009)

Kybernetika

In the Shapley-Scarf economy each agent is endowed with one unit of an indivisible good (house) and wants to exchange it for another, possibly the most preferred one among the houses in the market. In this economy, core is always nonempty and a core allocation can be found by the famous Top Trading Cycles algorithm. Recently, a modification of this economy, containing Q >= 2 types of goods (say, houses and cars for Q=2) has been introduced. We show that if the number of agents is 2, a complete...

On the computation of covert channel capacity

Eugene Asarin, Cătălin Dima (2010)

RAIRO - Theoretical Informatics and Applications

We address the problem of computing the capacity of a covert channel, modeled as a nondeterministic transducer. We give three possible statements of the notion of “covert channel capacity” and relate the different definitions. We then provide several methods allowing the computation of lower and upper bounds for the capacity of a channel. We show that, in some cases, including the case of input-deterministic channels, the capacity of the channel can be computed exactly (e.g. in the form...

On the computation of the GCD of 2-D polynomials

Panagiotis Tzekis, Nicholas Karampetakis, Haralambos Terzidis (2007)

International Journal of Applied Mathematics and Computer Science

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.

On the computational complexity of centers locating in a graph

Ján Plesník (1980)

Aplikace matematiky

It is shown that the problem of finding a minimum k -basis, the n -center problem, and the p -median problem are N P -complete even in the case of such communication networks as planar graphs with maximum degree 3. Moreover, a near optimal m -center problem is also N P -complete.

On the computational complexity of (O,P)-partition problems

Jan Kratochvíl, Ingo Schiermeyer (1997)

Discussiones Mathematicae Graph Theory

We prove that for any additive hereditary property P > O, it is NP-hard to decide if a given graph G allows a vertex partition V(G) = A∪B such that G[A] ∈ 𝓞 (i.e., A is independent) and G[B] ∈ P.

Currently displaying 281 – 300 of 518