The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 518

Showing per page

On the reduction of a random basis

Ali Akhavi, Jean-François Marckert, Alain Rouault (2009)

ESAIM: Probability and Statistics

For p ≤ n, let b1(n),...,bp(n) be independent random vectors in n with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If b ^ 1 ( n ) , ... , b ^ p ( n ) is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...

On the simplest centralizer of a language

Paolo Massazza, Petri Salmela (2006)

RAIRO - Theoretical Informatics and Applications

Given a finite alphabet Σ and a language L ⊆ ∑+, the centralizer of L is defined as the maximal language commuting with it. We prove that if the primitive root of the smallest word of L (with respect to a lexicographic order) is prefix distinguishable in L then the centralizer of L is as simple as possible, that is, the submonoid L*. This lets us obtain a simple proof of a known result concerning the centralizer of nonperiodic three-word languages.

On the size of one-way quantum finite automata with periodic behaviors

Carlo Mereghetti, Beatrice Palano (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We show that, for any stochastic event p of period n , there exists a measure-once one-way quantum finite automaton (1qfa) with at most 2 6 n + 25 states inducing the event a p + b , for constants a > 0 , b 0 , satisfying a + b 1 . This fact is proved by designing an algorithm which constructs the desired 1qfa in polynomial time. As a consequence, we get that any periodic language of period n can be accepted with isolated cut point by a 1qfa with no more than 2 6 n + 26 states. Our results give added evidence of the strength of measure-once...

On the Size of One-way Quantum Finite Automata with Periodic Behaviors

Carlo Mereghetti, Beatrice Palano (2010)

RAIRO - Theoretical Informatics and Applications

We show that, for any stochastic event p of period n, there exists a measure-once one-way quantum finite automaton (1qfa) with at most 2 6 n + 25 states inducing the event ap+b, for constants a>0, b ≥ 0, satisfying a+b ≥ 1. This fact is proved by designing an algorithm which constructs the desired 1qfa in polynomial time. As a consequence, we get that any periodic language of period n can be accepted with isolated cut point by a 1qfa with no more than 2 6 n + 26 states. Our results give added evidence of the...

Currently displaying 401 – 420 of 518