The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
222
The paper deals with the recently proposed autotracking piecewise cubic approximation (APCA) based on the discrete projective transformation, and neural networks (NN). The suggested new approach facilitates the analysis of data with complex dependence and relatively small errors. We introduce a new representation of polynomials that can provide different local approximation models. We demonstrate how APCA can be applied to especially noisy data thanks to NN and local estimations. On the other hand,...
We propose a new method to construct piecewise linear classifiers. This method constructs hyperplanes of a piecewise linear classifier so as to keep the correct recognition rate over a threshold for a training set. The threshold is determined automatically by the MDL (Minimum Description Length) criterion so as to avoid overfitting of the classifier to the training set. The proposed method showed better results in some experiments than a previous method.
The class of weak parallel machines is interesting, because it contains some realistic parallel machine models, especially suitable for pipelined computations. We prove that a modification of the bulk synchronous parallel (BSP) machine model, called decomposable BSP (dBSP), belongs to the class of weak parallel machines if restricted properly. We will also correct some earlier results about pipelined parallel Turing machines.
The class of weak parallel machines is interesting, because it contains some
realistic parallel machine models, especially suitable for pipelined
computations. We prove that a modification of the bulk synchronous parallel
(BSP) machine model, called decomposable BSP (dBSP), belongs to the class of
weak parallel machines if restricted properly. We will also correct some
earlier results about pipelined parallel Turing machines.
The aim of works described in this article is to elaborate and experimentally evaluate a consistent method of Language Model (LM) construction for the sake of Polish speech recognition. In the proposed method we tried to take into account the features and specific problems experienced in practical applications of speech recognition in the Polish language, reach inflection, a loose word order and the tendency for short word deletion. The LM is created in five stages. Each successive stage takes the...
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .
In this paper a formulation for the fuzzy p-median model in a fuzzy environment is presented. The model allows to find optimal locations of p facilities and their related cost when data related to the node demands and the edge distances are imprecise and uncertain and also to know the degree of certainty of the solution. For the sake of illustration, the proposed model is applied in a reduced map of Kinshasa (Democratic Republic of Congo) obtaining results which are rather than realistic ones.
Currently displaying 81 –
100 of
222