The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present several solutions to
the Firing Squad Synchronization Problem on grid networks of
different shapes.
The nodes are finite state processors that
work in unison with other processors and in synchronized discrete steps. The
networks we deal with are: the line, the ring and the square.
For all of these models we consider one- and two-way
communication modes and we also constrain the quantity of information
that adjacent processors can exchange at each step.
We first present synchronization...
Beame, Cook and Hoover were the first to exhibit a log-depth, polynomial size circuit family for integer division. However, the family was not logspace-uniform. In this paper we describe log-depth, polynomial size, logspace-uniform, i.e., circuit family for integer division. In particular, by a well-known result this shows that division is in logspace. We also refine the method of the paper to show that division is in dlogtime-uniform .
Beame, Cook and Hoover were the first to exhibit
a log-depth, polynomial size circuit family for integer
division. However, the family was not logspace-uniform.
In this paper we describe log-depth, polynomial
size, logspace-uniform, i.e., NC1 circuit family for
integer division. In particular, by a well-known result this shows
that division is in logspace. We also refine the method
of the paper to show that division is in dlogtime-uniform
NC1.
Currently displaying 1 –
3 of
3