The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Consider partial maps ∑* → with a rational
domain. We show that two families of such series are actually the
same: the unambiguous rational series on the one hand, and
the max-plus and min-plus rational series on the other hand.
The decidability of equality was known to hold in both families with
different proofs, so the above unifies the picture.
We give an effective procedure to build an unambiguous automaton from
a max-plus automaton and a min-plus one that recognize the same series.
Cover automata for finite languages have been much studied a few years ago. It turns out that a simple mathematical structure, namely similarity relations over a finite set of words, is underlying these studies. In the present work, we investigate in detail for themselves the properties of these relations beyond the scope of finite languages. New results with straightforward proofs are obtained in this generalized framework, and previous results concerning cover automata are obtained as immediate...
Cover automata for finite languages have been much studied a few years ago.
It turns out that a simple mathematical structure, namely
similarity relations over a finite set of words, is underlying these
studies. In the present work, we investigate in detail for themselves
the properties of these relations beyond the scope of finite languages.
New results with straightforward proofs
are obtained in this generalized framework,
and previous results concerning cover
automata are obtained as immediate...
The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an ω-language L(x1d49c;) accepted by a Büchi 1-counter automaton x1d49c;. We prove the following surprising result: there exists a 1-counter Büchi automaton x1d49c; such that the cardinality of the complement L(𝒜) − of the ω-language L(𝒜) is not determined...
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an ω-language L(𝒜) accepted by a Büchi 1-counter automaton 𝒜. We prove the following surprising result: there exists a 1-counter Büchi automaton 𝒜 such that the cardinality of the complement L(𝒜) − of the ω-language L(𝒜) is not determined by ZFC: (1) There is a model V1...
Currently displaying 21 –
40 of
91