The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This short note reviews the main contributions of the Ph.D. thesis of Imre Simon. His graduate work had major impact on algebraic theory of automata and thirty years later we are in a good position to appreciate how sensitive he was in selecting good problems, and how clever in solving them!
This short note reviews the main contributions of the Ph.D. thesis
of Imre Simon.
His graduate work had major impact on algebraic theory of automata
and thirty years later we are in a good position to appreciate
how sensitive he was in selecting good problems, and how clever in
solving them!
We consider endomorphisms of a monoid defined by a special confluent rewriting system that admit a continuous extension to the completion given by reduced infinite words, and study from a dynamical viewpoint the nature of their infinite periodic points. For prefix-convergent endomorphisms and expanding endomorphisms, we determine the structure of the set of all infinite periodic points in terms of adherence values, bound the periods and show that all regular periodic points are attractors.
The purpose of this paper is to show connections between iterated
length-preserving rational transductions and linear space
computations. Hence, we study the smallest family of transductions
containing length-preserving rational transductions and closed under
union, composition and iteration. We give several characterizations of
this class using restricted classes of length-preserving rational
transductions, by showing the connections with "context-sensitive
transductions" and transductions associated...
Currently displaying 1 –
6 of
6