On the essential spectrum of Dirac operators with spherically symmetric potentials.
We prove the existence of the path-integral measure of two-dimensional Yang-Mills theory, as a probabilistic Radon measure on the "generalized orbit space" of gauge connections modulo gauge transformations, suitably completed following the approach of Ashtekar and Lewandowski.
Author’s abstract: “We introduce the concept of the flux homomorphism for regular Poisson manifolds. First we establish a one-to-one correspondence between Poisson diffeomorphisms close to and closed foliated 1-forms close to 0. This allows to show that the group of Poisson automorphisms is locally contractible and to define the flux locally. Then, by means of the foliated cohomology, we extend this local homomorphism to a global one”.