A characterization of quantic quantifiers in orthomodular lattices.
We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere.
We give a representation of an observable on a fuzzy quantum poset of type II by a pointwise defined real-valued function. This method is inspired by that of Kolesárová [6] and Mesiar [7], and our results extend representations given by the author and Dvurečenskij [4]. Moreover, we show that in this model, the converse representation fails, in general.
MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for -MV-algebras, we prove that, with every element in a -MV algebra , a spectral measure (i. e. an observable) can be associated, where denotes the Boolean -algebra...
Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.