Page 1 Next

Displaying 1 – 20 of 260

Showing per page

A characterization of coboundary Poisson Lie groups and Hopf algebras

Stanisław Zakrzewski (1997)

Banach Center Publications

We show that a Poisson Lie group (G,π) is coboundary if and only if the natural action of G×G on M=G is a Poisson action for an appropriate Poisson structure on M (the structure turns out to be the well known π + ). We analyze the same condition in the context of Hopf algebras. A quantum analogue of the π + structure on SU(N) is described in terms of generators and relations as an example.

A generalization of the conservation integral

Volkmar Liebscher (1998)

Banach Center Publications

Starting from the scheme given by Hudson and Parthasarathy [7,11] we extend the conservation integral to the case where the underlying operator does not commute with the time observable. It turns out that there exist two extensions, a left and a right conservation integral. Moreover, Itô's formula demands for a third integral with two integrators. Only the left integral shows similar continuity properties to that derived in [11] used for extending the integral to more than simple integrands. In...

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

A mathematical introduction to the Wigner formulation of quantum mechanics

Luigi Barletti (2003)

Bollettino dell'Unione Matematica Italiana

The paper is devoted to review, from a mathematical point of view, some fundamental aspects of the Wigner formulation of quantum mechanics. Starting from the axioms of quantum mechanics and of quantum statistics, we justify the introduction of the Wigner transform and eventually deduce the Wigner equation.

A noncommutative limit theorem for homogeneous correlations

Romuald Lenczewski (1998)

Studia Mathematica

We state and prove a noncommutative limit theorem for correlations which are homogeneous with respect to order-preserving injections. The most interesting examples of central limit theorems in quantum probability (for commuting, anticommuting, and free independence and also various q-qclt's), as well as the limit theorems for the Poisson law and the free Poisson law are special cases of the theorem. In particular, the theorem contains the q-central limit theorem for non-identically distributed variables,...

A Reproducing Kernel and Toeplitz Operators in the Quantum Plane

Stephen Bruce Sontz (2013)

Communications in Mathematics

We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...

Currently displaying 1 – 20 of 260

Page 1 Next