The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
1948
Approximate aggregation techniques consist of introducing certain approximations that
allow one to reduce a complex system involving many coupled variables obtaining a simpler
ʽʽaggregated systemʼʼ governed by a few variables. Moreover, they give results that allow
one to extract information about the complex original system in terms of the behavior of
the reduced one. Often, the feature that allows one to carry out such a reduction is the
presence...
Our work field is Multiple-Criteria Decision Making Problems. We study the binary relations, not necessarily conical, that represent the decisor's preferences in the Objective or Outcome Space, we approach them by using cones and we explore under what conditions this approximation can retrieve the entire information of these binary relations.
In this paper we present a result on convergence of approximate solutions of stochastic differential equations involving integrals with respect to α-stable Lévy motion. We prove an appropriate weak limit theorem, which does not follow from known results on stability properties of stochastic differential equations driven by semimartingales. It assures convergence in law in the Skorokhod topology of sequences of approximate solutions and justifies discrete time schemes applied in computer simulations....
The purpose of this paper is to prove existence of an ε -equilib- rium point in a dynamic Nash game with Borel state space and long-run time average cost criteria for the players. The idea of the proof is first to convert the initial game with ergodic costs to an ``equivalent" game endowed with discounted costs for some appropriately chosen value of the discount factor, and then to approximate the discounted Nash game obtained in the first step with a countable state space game for which existence...
We study a fundamental issue in the theory of modeling of financial markets. We consider a model where any investment opportunity is described by its cash flows. We allow for a finite number of transactions in a finite time horizon. Each transaction is held at a random moment. This places our model closer to the real world situation than discrete-time or continuous-time models. Moreover, our model creates a general framework to consider markets with different types of imperfection: proportional...
Various aspects of arbitrage on finite horizon continuous time markets using simple strategies consisting of a finite number of transactions are studied. Special attention is devoted to transactions without shortselling, in which we are not allowed to borrow assets. The markets without or with proportional transaction costs are considered. Necessary and sufficient conditions for absence of arbitrage are shown.
We study a version of no arbitrage condition in a simple model with general transaction costs. Our condition is equivalent to the existence of an equivalent martingale measure.
We consider markets with proportional transaction costs and shortsale restrictions. We give necessary and sufficient conditions for the absence of arbitrage and also estimate the super-replication price.
While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the interplay...
In this article we give descriptions of some economic models that are based on Arrow-Hahn economic model. Finally we consider a model with two major assumptions: first, there is discontinuous excess demand function and, second, if price goes to zero, then it is possible that excess demand may approach infinity. For this last new economic model the existence of quasi-equilibrium is proved.
Este trabajo trata el problema de asignación de recursos cuando el objetivo es maximizar la mínima recompensa y las funciones recompensa son continuas y estrictamente crecientes. Se estudian diferentes propiedades que conducen a algoritmos que permiten de forma eficiente la resolución de gran variedad de problemas de esta naturaleza, tanto con variables continuas como discretas.
Currently displaying 281 –
300 of
1948