Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Modeling the Cancer Stem Cell Hypothesis

C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke (2010)

Mathematical Modelling of Natural Phenomena

Solid tumors and hematological cancers contain small population of tumor cells that are believed to play a critical role in the development and progression of the disease. These cells, named Cancer Stem Cells (CSCs), have been found in leukemia, myeloma, breast, prostate, pancreas, colon, brain and lung cancers. It is also thought that CSCs drive the metastatic spread of cancer. The CSC compartment features a specific and phenotypically defined cell...

Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey

F. Kappel (2012)

Mathematical Modelling of Natural Phenomena

In this paper we give a survey on modeling efforts concerning the CVRS. The material we discuss is organized in accordance with modeling goals and stresses control and transport issues. We also address basic modeling approaches and discuss some of the challenges for mathematical modeling methodologies in the context of parameter estimation and model validation.

Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments

J. Clairambault (2009)

Mathematical Modelling of Natural Phenomena

This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the...

Multiphase and Multiscale Trends in Cancer Modelling

L. Preziosi, A. Tosin (2009)

Mathematical Modelling of Natural Phenomena

While drawing a link between the papers contained in this issue and those present in a previous one (Vol. 2, Issue 3), this introductory article aims at putting in evidence some trends and challenges on cancer modelling, especially related to the development of multiphase and multiscale models.

Multiscale modelling of sound propagation through the lung parenchyma

Paul Cazeaux, Jan S. Hesthaven (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective...

Currently displaying 21 – 33 of 33

Previous Page 2