Displaying 661 – 680 of 1497

Showing per page

La medida de divergencia de Kagan en el muestreo secuencial con procesos de Dirichlet.

Domingo Morales González (1986)

Trabajos de Estadística

In this paper the Kagan divergence measure is extended in order to establish a measure of the information that a random sample gives about a Dirichlet process as a whole. After studying some of its properties, the expression obtained in sampling from the step n to the step n+1 is given, and its Bayesian properties are studied. We finish proving the good behaviour of a stopping rule defined on the basis of the information obtained in sampling when passing from a step to the following.

Lattice-Like Total Perfect Codes

Carlos Araujo, Italo Dejter (2014)

Discussiones Mathematicae Graph Theory

A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ) formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.

Left MQQs whose left parastrophe is also quadratic

Simona Samardjiska, Danilo Gligoroski (2012)

Commentationes Mathematicae Universitatis Carolinae

A left quasigroup ( Q , q ) of order 2 w that can be represented as a vector of Boolean functions of degree 2 is called a left multivariate quadratic quasigroup (LMQQ). For a given LMQQ there exists a left parastrophe operation q defined by: q ( u , v ) = w q ( u , w ) = v that also defines a left multivariate quasigroup. However, in general, ( Q , q ) is not quadratic. Even more, representing it in a symbolic form may require exponential time and space. In this work we investigate the problem of finding a subclass of LMQQs whose left parastrophe...

Currently displaying 661 – 680 of 1497