On -dimensional unified -Jensen difference divergence measures and their applications
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
In this paper, measurable solutions of a functional equation with four unknown functions are obtained. As an application of the measurable solutions a joint characterization of Shannon’s entropy and entropy of type is given.
Standard properties of -divergences of probability measures are widely applied in various areas of information processing. Among the desirable supplementary properties facilitating employment of mathematical methods is the metricity of -divergences, or the metricity of their powers. This paper extends the previously known family of -divergences with these properties. The extension consists of a continuum of -divergences which are squared metric distances and which are mostly new but include...
A code X over the alphabet A is complete if the submonoid X* generated by X meets all two-sided ideals of A*. If one measures the cost of a finite code X over A, with respect to a given information source S, by the quantity gamma(X) = <X> ln |A|, we say that X is completely optimal for S if it does not exist any code X', over an arbitrary alphabet, such that gamma (X') < gamma (X). One can show that for |X| ≤ 5 a completely optimal code has to be complete. However for |X| >...
In 1965 Levenshtein introduced the deletion correcting codes and found an asymptotically optimal family of 1-deletion correcting codes. During the years there has been a little or no research on t-deletion correcting codes for larger values of t. In this paper, we consider the problem of finding the maximal cardinality L2(n;t) of a binary t-deletion correcting code of length n. We construct an infinite family of binary t-deletion correcting codes. By computer search, we construct t-deletion codes...
This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development of this area. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modified so as to obtain an admittance representation for all kinds of multi-ports. N-dimensional networks are...