The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.Optimal ternary constant-weight lexicogarphic codes have been
constructed. New bounds for the maximum size of ternary constant-weight
codes are obtained. Tables of bounds on A3 (n, d, w) are given for d = 3, 4, 6.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The maximal cardinality of a code W on the unit sphere in n dimensions
 with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two
methods for obtaining new upper bounds on A(n, s) for some values of n and s.
We find new linear programming bounds by suitable polynomials of degrees which
are higher than the degrees of the previously known good polynomials due to 
Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein
bounds [11, 12]. In such cases...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1)
and a prime or a prime power q.  The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q
such that nq(k, d) can be expressed.This research was partially supported by Grant-in-Aid for Scientific Research of Japan
Society for the Promotion of Science under Contract Number 20540129.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper we consider the extremal even self-dual -additive codes. We give a complete classification for length . Under the hypothesis that at least two minimal words have the same support, we classify the codes of length  and we show that in length  such a code is equivalent to the unique -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal -modular lattices.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V  C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012). In particular,...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Motivated by a problem posed by Hamming in 1980, we define even codes. They are Huffman type prefix codes with the additional property of being able to detect the occurrence of an odd number of 1-bit errors in the message. We characterize optimal even codes and describe a simple method for constructing the optimal codes. Further, we compare optimal even codes with Huffman codes for equal frequencies. We show that the maximum encoding in an optimal even code is at most two bits larger than the maximum...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Motivated by a problem posed by Hamming in 1980, we define even codes.
They are Huffman type prefix codes with the additional property of being
able to detect the occurrence of an odd number of 1-bit errors in the message.
We characterize optimal even codes and describe a simple method for
constructing the optimal codes. Further, we compare optimal even codes
with Huffman codes for equal frequencies. We show that the maximum encoding
in an optimal even code is at most two bits larger than the maximum...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 21 – 
                                        39 of 
                                        39