Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations

O. Calvo-Andrade[1]

  • [1] CIMAT: Ap. Postal 402, Guanajuato, 36000, Gto. México

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 4, page 811-854
  • ISSN: 0240-2963

Abstract

top
It is a known fact that the space of codimension one holomorphic foliations with singularities with a given ‘normal bundle’ has a natural structure of an algebraic variety. The aim of this paper is to consider the problem of the description of its irreducible components. To do this, we are interested in the problem of the existence of an integral factor of a twisted integrable differential 1–form defined on a projective manifold. We are going to do a geometrical analysis of the codimension one foliation associated to this form. The essential point of this paper consists in understanding the role played by a positive condition on some object associated to the foliation.

How to cite

top

Calvo-Andrade, O.. "Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations." Annales de la faculté des sciences de Toulouse Mathématiques 18.4 (2009): 811-854. <http://eudml.org/doc/10128>.

@article{Calvo2009,
abstract = {It is a known fact that the space of codimension one holomorphic foliations with singularities with a given ‘normal bundle’ has a natural structure of an algebraic variety. The aim of this paper is to consider the problem of the description of its irreducible components. To do this, we are interested in the problem of the existence of an integral factor of a twisted integrable differential 1–form defined on a projective manifold. We are going to do a geometrical analysis of the codimension one foliation associated to this form. The essential point of this paper consists in understanding the role played by a positive condition on some object associated to the foliation.},
affiliation = {CIMAT: Ap. Postal 402, Guanajuato, 36000, Gto. México},
author = {Calvo-Andrade, O.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {10},
number = {4},
pages = {811-854},
publisher = {Université Paul Sabatier, Toulouse},
title = {Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations},
url = {http://eudml.org/doc/10128},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Calvo-Andrade, O.
TI - Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/10//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 4
SP - 811
EP - 854
AB - It is a known fact that the space of codimension one holomorphic foliations with singularities with a given ‘normal bundle’ has a natural structure of an algebraic variety. The aim of this paper is to consider the problem of the description of its irreducible components. To do this, we are interested in the problem of the existence of an integral factor of a twisted integrable differential 1–form defined on a projective manifold. We are going to do a geometrical analysis of the codimension one foliation associated to this form. The essential point of this paper consists in understanding the role played by a positive condition on some object associated to the foliation.
LA - eng
UR - http://eudml.org/doc/10128
ER -

References

top
  1. Baum (P.), Bott (R.).— Singularities of Holomorphic Foliations, Journal on Differential Geometry 7, p. 279-342 (1972). Zbl0268.57011MR377923
  2. Ballico (E.).— A splitting theorem for the Kupka component of a foliation of P n , n 6 . Addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier 45, p. 1119-1121 (1995). Zbl0831.58046MR1359842
  3. Ballico (E.).— A splitting theorem for the Kupka component of a foliation of P n , n 6 . Addendum to an addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier 49, p. 1423-1425 (1999). Zbl0959.32037MR1703094
  4. Brîzănescu (V.).— Holomorphic Vector bundles over Compact Complex Surfaces, Springer LNM 1624, (1996). Zbl0848.32024MR1439504
  5. Calvo (O.).— Persistência de folheações definidas por formas logaritmicas, Ph. D. Thesis, IMPA (1990). 
  6. Calvo (O.).— Irreducible Components of the space of Foliations, Math. Ann. 299, p. 751-767 (1994). Zbl0811.58006MR1286897
  7. Calvo (O.).— Deformations of Holomorphic Foliations. Proceedings of the Workshop on Topology. Arraut, J. L., Hurder, S., Santos, N., Schweitzer, P. Eds. AMS, Contemporary Math. 161, p. 21-28 (1994). MR1271825
  8. Calvo (O.).— Deformations of Branched Lefschetz’s Pencils, Bull. of the Brazilian Math. Soc. 26 No. 1, p. 67-83 (1995). Zbl0843.58001MR1339179
  9. Calvo (O.).— Foliations with a Kupka Component on Algebraic Manifolds, Bull. of the Brazilian Math. Soc. 30 No. 2, p. 183-197 (1999). Zbl1058.32023MR1703038
  10. Calvo (O.), Cerveau (D.), Giraldo (L.), Lins (A.).— Irreducible components of the space of foliations associated with the affine Lie Algebra, Ergodic Theroy and Dynamical Systems 24, p. 987-1014 (2004). Zbl1068.32022MR2085387
  11. Calvo (O.), Giraldo (L.).— Algebraic Foliations and Actions of the Affine Group, to appear. 
  12. Calvo (O.), Soares (M.).— Chern numbers of a Kupka component, Ann. Inst. Fourier 44, p. 1219-1236 (1994). Zbl0811.32024MR1306554
  13. Camacho (C.), Lins (A.), Sad (P.).— Foliations with Algebraic Limit sets, Ann. of Math. 136, p. 429-446 (1992). Zbl0769.57017MR1185124
  14. Cerveau (D.), Déserti (J.).— Feuilletages et actions de groupes sur les espaces projectifs, Mémories de la Societé Mathématique de France No 103 (2005). Zbl1107.37037MR2200857
  15. Cerveau (D.), Lins (A.).— Codimension one Foliations in P n , n 3 , with Kupka components, in Complex Analytic Methods in Dynamical Systems. C. Camacho, A. Lins, R. Moussu, P. Sad. Eds. Astérisque 222, p. 93-133 (1994). Zbl0823.32014MR1285387
  16. Cerveau (D.), Lins (A.).— Irreducible components of the space of holomorphic foliations of degree two in P n , n 3 , Annals of Math. 143, p. 577-612 (1996). Zbl0855.32015MR1394970
  17. Cerveau (D.), Mattei (J. F.).— Formes intégrables holomorphes singulières, Astérisque 97 (1982). Zbl0545.32006MR704017
  18. Cukierman (F.), Pereira (J. V.).— Stability of foliations with split tangent sheaf, American Journal of Math. (to appear). Zbl1189.32021
  19. Epstein (D.), Rosemberg (H.).— Stability of compact foliations, in Geometry and Topology, J. Palis, M. do Carmo, Springer LNM, 597, p. 151-160 (1977). Zbl0363.57018MR501007
  20. Gómez-Mont (X.).— Universal Families of foliations by curves, Astérisque 150-151, p. 109-129, (1987) Zbl0641.32014MR923596
  21. Gómez-Mont (X.), Lins (A.).— Structural Stability of foliations with a meromorphic first integral, Topology 30, p. 315-334 (1991). Zbl0735.57014MR1113681
  22. Gómez-Mont (X.), Muciño (J.).— Persistent cycles for foliations having a meromorphic first integral in Holomorphic Dynamics Gómez-Mont, Seade, Verjovsky Eds. Spriger LNM 1345, p. 129-162 (1987). Zbl0681.58032MR980957
  23. Griffiths (Ph.).— Hermitian Differential Geometry, Chern Classes and Positive Vector Bundles in Global Analysis, papers in honor of K. Kodaira. Tokyo, Princenton: University of Tokyo Press, Princenton University Press p. 185-251 (1969). Zbl0201.24001MR258070
  24. Griffiths (Ph.), Harris (J.).— Principles of Algebraic Geometry, Pure & Appl. Math. Wiley Interscience (1978). Zbl0408.14001MR507725
  25. Horrocks (G.), Mumford (D.).— A rank-2 bundle with 15000 symetries, Topology 12, p. 63-81 (1973). Zbl0255.14017MR382279
  26. Kobayashi (S.).— Differential Geometry of Complex Vector Bundles, Kano Memorial Lectures 5, Princeton University Press (1987). Zbl0708.53002MR909698
  27. Langevin (R.), Rosenberg (H.).— On stability of compact leaves and fibrations, Topology 16, p. 107-111 (1977). Zbl0346.57009MR461523
  28. Malgrange (B.).— Frobenius avec singularités, 1. Codimension 1, Publ. Math. IHES 46, p. 163-173 (1976). Zbl0355.32013MR508169
  29. Medeiros (A.).— Structural stability of integrable differential forms. in Geormetry and Topology J. Palis, M. do Carmo Eds. Springer LNM 597, p. 395-428 (1977). Zbl0363.58007MR451274
  30. Muciño-Raymundo (J.).— Deformations of holomorphic foliations having a meromorphic first integral, J. für die reine und angewandte Mathematik 461, p. 189-219, 1995. Zbl0816.32022MR1324214
  31. Nori (M. V.).— Zariski’s conjecture and related topics, Ann. Sci. Ec. Norm. Sup. 16, p. 305-344 (1983). Zbl0527.14016MR732347
  32. Okonek (Ch.), Schneider (M.), Spindler (H.).— Vector Bundles on Complex Projective spaces, Progress in Math. 3 Birkhauser (1978). Zbl0438.32016MR561910
  33. Paul (E.).— Etude topologique des formes logarithmiques fermées, Invent. Math. 95, p. 395-420 (1989). Zbl0641.57013MR974909
  34. Serre (J. P.).— Un théorème de dualité, Coment. Mat. Helv. 29, p. 9-26 (1955). Zbl0067.16101MR67489

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.