A splitting theorem for the Kupka component of a foliation of . Addendum to an addendum to a paper by Calvo-Andrade and Soares
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 4, page 1423-1425
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBallico, Edoardo. "A splitting theorem for the Kupka component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares." Annales de l'institut Fourier 49.4 (1999): 1423-1425. <http://eudml.org/doc/75387>.
@article{Ballico1999,
abstract = {Here we show that a Kupka component $K$ of a codimension 1 singular foliation $F$ of $\{\Bbb C\}\{\Bbb P\}^n,\;n\ge 6$ is a complete intersection. The result implies the existence of a meromorphic first integral of $F$. The result was previously known if $\{\rm deg\}(K)$ was assumed to be not a square.},
author = {Ballico, Edoardo},
journal = {Annales de l'institut Fourier},
keywords = {singular foliations; codimension 1 foliations; Kupka component; complete intersection; unstable vector bundle; rank 2 vector bundle; splitting of a vector bundle; meromorphic first integral; Barth-Lefschetz theorems},
language = {eng},
number = {4},
pages = {1423-1425},
publisher = {Association des Annales de l'Institut Fourier},
title = {A splitting theorem for the Kupka component of a foliation of $\{\mathbb \{C\}\}\{\mathbb \{P\}\}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares},
url = {http://eudml.org/doc/75387},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Ballico, Edoardo
TI - A splitting theorem for the Kupka component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1423
EP - 1425
AB - Here we show that a Kupka component $K$ of a codimension 1 singular foliation $F$ of ${\Bbb C}{\Bbb P}^n,\;n\ge 6$ is a complete intersection. The result implies the existence of a meromorphic first integral of $F$. The result was previously known if ${\rm deg}(K)$ was assumed to be not a square.
LA - eng
KW - singular foliations; codimension 1 foliations; Kupka component; complete intersection; unstable vector bundle; rank 2 vector bundle; splitting of a vector bundle; meromorphic first integral; Barth-Lefschetz theorems
UR - http://eudml.org/doc/75387
ER -
References
top- [B] E. BALLICO, A splitting theorem for the Kupka component of a foliation of ℂℙn, n ≥ 6. Addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier, 45-4 (1995), 1119-1121. Zbl0831.58046
- [CS] O. CALVO-ANDRADE, M. SOARES, Chern numbers of a Kupka component, Ann. Inst. Fourier, 44-4 (1994), 1219-1236. Zbl0811.32024MR95m:32045
- [CL] D. CERVEAU, A. LINS, Codimension one foliations in ℂℙn n ≥ 3, with Kupka components, in Complex analytic methods in dinamical systems, Astérisque, (1994), 93-133. Zbl0823.32014
- [F] G. FALTINGS, Ein Kriterium für vollständige Durchsnitte, Invent. Math., 62 (1981), 393-401. Zbl0456.14027MR82f:14050
- [FL] W. FULTON, R. LAZARSFELD, Connectivity in algebraic geometry, in Algebraic Geometry, Proceedings Chicago 1980, Lect. Notes in Math. 862, Springer-Verlag (1981), 26-92. Zbl0484.14005MR83i:14002
- [GN] X. GOMEZ-MONT, A. LINS-NETO, A structural stability of foliations with a meromorphic firs integral, Topology, 30 (1990), 315-334. Zbl0735.57014MR92j:32114
- [GH] Ph. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, John Wiley & Sons, 1978. Zbl0408.14001
- [OSS] Ch. OKONEK, M. SCHNEIDER, H. SPINDLER, Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhäuser, Basel, 1978.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.