A splitting theorem for the Kupka component of a foliation of 𝐂 𝐏 n , n 6 . Addendum to a paper by O. Calvo-Andrade and N. Soares

Edoardo Ballico

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 4, page 1119-1121
  • ISSN: 0373-0956

Abstract

top
Here we show that a Kupka component K of a codimension 1 singular foliation F of C P n , n 6 with deg ( K ) not a square is a complete intersection. The result implies the existence of a meromorphic first integral of F .

How to cite

top

Ballico, Edoardo. "A splitting theorem for the Kupka component of a foliation of ${\bf C} {\bf P}^n,\,n\ge 6$. Addendum to a paper by O. Calvo-Andrade and N. Soares." Annales de l'institut Fourier 45.4 (1995): 1119-1121. <http://eudml.org/doc/75147>.

@article{Ballico1995,
abstract = {Here we show that a Kupka component $K$ of a codimension 1 singular foliation $F$ of $\{\bf C\}\{\bf P\}^n,\, n\ge 6$ with $\{\rm deg\}(K)$ not a square is a complete intersection. The result implies the existence of a meromorphic first integral of $F$.},
author = {Ballico, Edoardo},
journal = {Annales de l'institut Fourier},
keywords = {singular foliations; codimension 1 foliations; Kupka component; complete intersection; unstable vector bundle; rank 2 vector bundle; splitting of a vector bundle; meromorphic first integral; Barth-Lefschetz theorems},
language = {eng},
number = {4},
pages = {1119-1121},
publisher = {Association des Annales de l'Institut Fourier},
title = {A splitting theorem for the Kupka component of a foliation of $\{\bf C\} \{\bf P\}^n,\,n\ge 6$. Addendum to a paper by O. Calvo-Andrade and N. Soares},
url = {http://eudml.org/doc/75147},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Ballico, Edoardo
TI - A splitting theorem for the Kupka component of a foliation of ${\bf C} {\bf P}^n,\,n\ge 6$. Addendum to a paper by O. Calvo-Andrade and N. Soares
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 1119
EP - 1121
AB - Here we show that a Kupka component $K$ of a codimension 1 singular foliation $F$ of ${\bf C}{\bf P}^n,\, n\ge 6$ with ${\rm deg}(K)$ not a square is a complete intersection. The result implies the existence of a meromorphic first integral of $F$.
LA - eng
KW - singular foliations; codimension 1 foliations; Kupka component; complete intersection; unstable vector bundle; rank 2 vector bundle; splitting of a vector bundle; meromorphic first integral; Barth-Lefschetz theorems
UR - http://eudml.org/doc/75147
ER -

References

top
  1. [CS]O. CALVO-ANDRADE, M. SOARES, Chern numbers of a Kupka component, Ann. Inst. Fourier, 44-4 (1994), 1237-1242. Zbl0811.32024MR95m:32045
  2. [CL]D. CERVEAU, A. LINS, Codimension one foliations in CPn n ≥ 3, with Kupka components, in : Complex analytic methods in dinamical systems, Astérisque (1994), 93-133. Zbl0823.32014
  3. [F]G. FALTINGS, Ein Kriterium für vollständige Durchsnitte, Invent. Math., 62 (1981), 393-401. Zbl0456.14027MR82f:14050
  4. [FL]W. FULTON, R. LAZARSFELD, Connectivity in algebraic geometry, in : Algebraic Geometry, Proceedings Chicago 1980, Lect. Notes in Math. 862, Springer-Verlag (1981), 26-92. Zbl0484.14005
  5. [GML]X. GOMEZ-MONT, N. LINS, A structural stability of foliations with a meromorphic first integral, Topology, 30 (1990), 315-334. Zbl0735.57014
  6. [OSS]Ch. OKONEK, M. SCHNEIDER, H. SPINDLER, Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, Basel, 1978. Zbl0438.32016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.