Geometry of currents, intersection theory and dynamics of horizontal-like maps

Tien-Cuong Dinh[1]; Nessim Sibony[2]

  • [1] Institut de Mathématique de Jussieu Plateau 7D, Analyse Complexe 175 rue du Chevaleret 75013 Paris (France)
  • [2] Université Paris-Sud Mathématique - Bâtiment 425 UMR 8628 91405 Orsay (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 2, page 423-457
  • ISSN: 0373-0956

Abstract

top
We introduce a geometry on the cone of positive closed currents of bidegree ( p , p ) and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.

How to cite

top

Dinh, Tien-Cuong, and Sibony, Nessim. "Geometry of currents, intersection theory and dynamics of horizontal-like maps." Annales de l’institut Fourier 56.2 (2006): 423-457. <http://eudml.org/doc/10152>.

@article{Dinh2006,
abstract = {We introduce a geometry on the cone of positive closed currents of bidegree $(p,p)$ and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.},
affiliation = {Institut de Mathématique de Jussieu Plateau 7D, Analyse Complexe 175 rue du Chevaleret 75013 Paris (France); Université Paris-Sud Mathématique - Bâtiment 425 UMR 8628 91405 Orsay (France)},
author = {Dinh, Tien-Cuong, Sibony, Nessim},
journal = {Annales de l’institut Fourier},
keywords = {Structural discs of currents; Green current; equilibrium measure; mixing; entropy; topological entropy; intersection of currents; Green currents; horizontal-like mappings; extremality properties},
language = {eng},
number = {2},
pages = {423-457},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometry of currents, intersection theory and dynamics of horizontal-like maps},
url = {http://eudml.org/doc/10152},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Dinh, Tien-Cuong
AU - Sibony, Nessim
TI - Geometry of currents, intersection theory and dynamics of horizontal-like maps
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 423
EP - 457
AB - We introduce a geometry on the cone of positive closed currents of bidegree $(p,p)$ and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.
LA - eng
KW - Structural discs of currents; Green current; equilibrium measure; mixing; entropy; topological entropy; intersection of currents; Green currents; horizontal-like mappings; extremality properties
UR - http://eudml.org/doc/10152
ER -

References

top
  1. E. Bedford, M. Lyubich, J. Smillie, Polynomial diffeomorphisms of 2 , V: The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77-125 Zbl0792.58034
  2. E. Bedford, J. Smillie, Polynomial diffeomorphisms of 2 , III: Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), 395-420 Zbl0765.58013
  3. J. P. Demailly, Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry, Plemum Press (1993), 115-193 Zbl0792.32006
  4. T. C. Dinh, Decay of correlations for Hénon maps Zbl05079886
  5. T. C. Dinh, R. Dujardin, N. Sibony, On the dynamics near infinity of some polynomial mappings in 2 , Math. Ann. 333 (2005), 703-739 Zbl1079.37040
  6. T. C. Dinh, N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. 82 (2003), 367-423 Zbl1033.37023
  7. T. C. Dinh, N. Sibony, Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup. 37 (2004), 959-971 Zbl1074.53058
  8. T. C. Dinh, N. Sibony, Dynamics of regular birational maps in k , J. Funct. Anal. 222 (2005), 202-216 Zbl1067.37055
  9. T. C. Dinh, N. Sibony, Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc. 18 (2005), 291-312 Zbl1066.32024
  10. T. C. Dinh, N. Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. 161 (2005), 1637-1644 Zbl1084.54013
  11. R. Dujardin, Hénon-like mappings in 2 , Amer. J. Math. 126 (2004), 439-472 Zbl1064.37035
  12. J. Duval, N. Sibony, Polynomial convexity, rational convexity, and currents, Duke Math. J. 79 (1995), 487-513 Zbl0838.32006
  13. H. Federer, Geometric Measure Theory, (1969), Springer Verlag, New York Zbl0176.00801
  14. J. E. Fornæss, N. Sibony, Complex Hénon mappings in 2 and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), 345-380 Zbl0761.32015
  15. J. E. Fornæss, N. Sibony, Oka’s inequality for currents and applications, Math. Ann. 301 (1995), 399-419 Zbl0832.32010
  16. M. Gromov, On the entropy of holomorphic maps, Enseignement Math. 49 (2003), 217-235 Zbl1080.37051
  17. R. Harvey, J. Polking, Extending analytic objects, Comm. Pure Appl. Math. 28 (1975), 701-727 Zbl0323.32013
  18. R. Harvey, B. Shiffman, A characterization of holomorphic chains, Ann. of Math. (2) 99 (1974), 553-587 Zbl0287.32008
  19. L. Hörmander, The analysis of Linear partial differential operators I, (1983), Springer-Verlag Zbl0521.35001
  20. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge Univ. Press. Zbl0878.58020
  21. P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, (1968), Dunod, Paris Zbl0195.11603
  22. N. Sibony, Dynamique des applications rationnelles de k , Panoramas et Synthèses 8 (1999), 97-185 Zbl1020.37026
  23. J. Smillie, The entropy of polynomial diffeomorphisms of 2 , Ergodic Theory & Dynamical Systems 10 (1990), 823-827 Zbl0695.58023
  24. P. Walters, An introduction to ergodic theory, (1982), Springer, Berlin-Heidelberg-New York Zbl0475.28009
  25. Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 285-300 Zbl0641.54036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.