Hyperbolic measure of maximal entropy for generic rational maps of k

Gabriel Vigny[1]

  • [1] U. P. J. V. LAMFA - UMR 7352 33, rue Saint-Leu 80039 Amiens (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 645-680
  • ISSN: 0373-0956

Abstract

top
Let f be a dominant rational map of k such that there exists s < k with λ s ( f ) > λ l ( f ) for all l . Under mild hypotheses, we show that, for A outside a pluripolar set of Aut ( k ) , the map f A admits a hyperbolic measure of maximal entropy log λ s ( f ) with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of f to k + 1 . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic function by a smooth positive closed current. This allows us to do all the computations in a smooth setting, using super-potentials theory to pass to the limit.

How to cite

top

Vigny, Gabriel. "Hyperbolic measure of maximal entropy for generic rational maps of $\mathbb{P}^k$." Annales de l’institut Fourier 64.2 (2014): 645-680. <http://eudml.org/doc/275576>.

@article{Vigny2014,
abstract = {Let $f$ be a dominant rational map of $\mathbb\{P\}^k$ such that there exists $s &lt;k$ with $\lambda _s(f)&gt;\lambda _l(f)$ for all $l$. Under mild hypotheses, we show that, for $A$ outside a pluripolar set of $\mathrm\{Aut\} (\mathbb\{P\}^k)$, the map $f\circ A$ admits a hyperbolic measure of maximal entropy $\log \lambda _s(f)$ with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of $f$ to $\mathbb\{P\}^\{k+1\}$. This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic function by a smooth positive closed current. This allows us to do all the computations in a smooth setting, using super-potentials theory to pass to the limit.},
affiliation = {U. P. J. V. LAMFA - UMR 7352 33, rue Saint-Leu 80039 Amiens (France)},
author = {Vigny, Gabriel},
journal = {Annales de l’institut Fourier},
keywords = {Complex dynamics; meromorphic maps; Super-potentials; entropy; hyperbolic measure; holomorphic dynamics; super-potentials},
language = {eng},
number = {2},
pages = {645-680},
publisher = {Association des Annales de l’institut Fourier},
title = {Hyperbolic measure of maximal entropy for generic rational maps of $\mathbb\{P\}^k$},
url = {http://eudml.org/doc/275576},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Vigny, Gabriel
TI - Hyperbolic measure of maximal entropy for generic rational maps of $\mathbb{P}^k$
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 645
EP - 680
AB - Let $f$ be a dominant rational map of $\mathbb{P}^k$ such that there exists $s &lt;k$ with $\lambda _s(f)&gt;\lambda _l(f)$ for all $l$. Under mild hypotheses, we show that, for $A$ outside a pluripolar set of $\mathrm{Aut} (\mathbb{P}^k)$, the map $f\circ A$ admits a hyperbolic measure of maximal entropy $\log \lambda _s(f)$ with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of $f$ to $\mathbb{P}^{k+1}$. This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic function by a smooth positive closed current. This allows us to do all the computations in a smooth setting, using super-potentials theory to pass to the limit.
LA - eng
KW - Complex dynamics; meromorphic maps; Super-potentials; entropy; hyperbolic measure; holomorphic dynamics; super-potentials
UR - http://eudml.org/doc/275576
ER -

References

top
  1. Eric Bedford, Jeffrey Diller, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), 331-368 Zbl1076.37031MR2140266
  2. Eric Bedford, John Smillie, Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), 395-420 Zbl0765.58013MR1188127
  3. Xavier Buff, Courants dynamiques pluripolaires, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), 203-214 Zbl1234.37037MR2830397
  4. Henry De Thélin, Sur les exposants de Lyapounov des applications méromorphes, Invent. Math. 172 (2008), 89-116 Zbl1139.37037MR2385668
  5. Henry De Thélin, Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) (2010) Zbl1214.37004
  6. J.-P. Demailly, Complex analytic and differential geometry, (1997) 
  7. Jeffrey Diller, Romain Dujardin, Vincent Guedj, Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 235-278 Zbl1197.37059MR2662665
  8. Jeffrey Diller, Romain Dujardin, Vincent Guedj, Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure, Comment. Math. Helv. 86 (2011), 277-316 Zbl1297.37022MR2775130
  9. Jeffrey Diller, Vincent Guedj, Regularity of dynamical Green’s functions, Trans. Amer. Math. Soc. 361 (2009), 4783-4805 Zbl1172.32004MR2506427
  10. Tien-Cuong Dinh, Viêt-Anh Nguyên, Nessim Sibony, Dynamics of horizontal-like maps in higher dimension, Adv. Math. 219 (2008), 1689-1721 Zbl1149.37025MR2458151
  11. Tien-Cuong Dinh, Nessim Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), 367-423 Zbl1033.37023MR1992375
  12. Tien-Cuong Dinh, Nessim Sibony, Dynamics of regular birational maps in k , J. Funct. Anal. 222 (2005), 202-216 Zbl1067.37055MR2129771
  13. Tien-Cuong Dinh, Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), 1637-1644 Zbl1084.54013MR2180409
  14. Tien-Cuong Dinh, Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), 221-258 Zbl1094.32005MR2208805
  15. Tien-Cuong Dinh, Nessim Sibony, Geometry of currents, intersection theory and dynamics of horizontal-like maps, Ann. Inst. Fourier (Grenoble) 56 (2006), 423-457 Zbl1089.37036MR2226022
  16. Tien-Cuong Dinh, Nessim Sibony, Pull-back currents by holomorphic maps, Manuscripta Math. 123 (2007), 357-371 Zbl1128.32020MR2314090
  17. Tien-Cuong Dinh, Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), 1-82 Zbl1227.32024MR2545825
  18. Tien-Cuong Dinh, Nessim Sibony, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebraic Geom. 19 (2010), 473-529 Zbl1202.32033MR2629598
  19. Romain Dujardin, Hénon-like mappings in 2 , Amer. J. Math. 126 (2004), 439-472 Zbl1064.37035MR2045508
  20. Romain Dujardin, Laminar currents and birational dynamics, Duke Math. J. 131 (2006), 219-247 Zbl1099.37037MR2219241
  21. Christophe Dupont, Large entropy measures for endomorphisms of ℂℙ k , Israel J. Math. 192 (2012), 505-533 Zbl1316.37026MR3009733
  22. Herbert Federer, Geometric measure theory, (1969), Springer-Verlag New York Inc., New York Zbl0176.00801MR257325
  23. M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology (1990), 1-38, World Sci. Publ., Teaneck, NJ Zbl0770.53042MR1095529
  24. Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), 217-235 Zbl1080.37051MR2026895
  25. Vincent Guedj, Entropie topologique des applications méromorphes, Ergodic Theory Dynam. Systems 25 (2005), 1847-1855 Zbl1087.37015MR2183297
  26. Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), 1589-1607 Zbl1088.37020MR2179389
  27. Yuri Kifer, Pei-Dong Liu, Random dynamics, Handbook of dynamical systems. Vol. 1B (2006), 379-499, Elsevier B. V., Amsterdam Zbl1130.37301MR2186245
  28. François Ledrappier, Peter Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), 568-576 Zbl0388.28020MR476995
  29. Alexander Russakovskii, Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), 897-932 Zbl0901.58023MR1488341

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.