On non-commutative twisting in étale and motivic cohomology

Jens Hornbostel[1]; Guido Kings

  • [1] Universität Regensburg NWF I, Mathematik 93040 Regensburg (Germany)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1257-1279
  • ISSN: 0373-0956

Abstract

top
This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups H 1 ( 𝒪 K [ 1 / S ] , H i ( X ¯ , p ( j ) ) ) , where X Spec 𝒪 K [ 1 / S ] is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to H i ( X ¯ , p ( j ) ) . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.

How to cite

top

Hornbostel, Jens, and Kings, Guido. "On non-commutative twisting in étale and motivic cohomology." Annales de l’institut Fourier 56.4 (2006): 1257-1279. <http://eudml.org/doc/10172>.

@article{Hornbostel2006,
abstract = {This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups $H^1(\mathcal\{O\}_K[1/S],H^i(\overline\{X\},\mathbb\{Q\}_p(j)))$, where $X\rightarrow \operatorname\{Spec\}\mathcal\{O\}_K[1/S]$ is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to $H^i(\overline\{X\},\mathbb\{Z\}_p(j))$. Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.},
affiliation = {Universität Regensburg NWF I, Mathematik 93040 Regensburg (Germany)},
author = {Hornbostel, Jens, Kings, Guido},
journal = {Annales de l’institut Fourier},
keywords = {Étale cohomology; motivic cohomology; non-commutative Iwasawa-theory; étale cohomology},
language = {eng},
number = {4},
pages = {1257-1279},
publisher = {Association des Annales de l’institut Fourier},
title = {On non-commutative twisting in étale and motivic cohomology},
url = {http://eudml.org/doc/10172},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Hornbostel, Jens
AU - Kings, Guido
TI - On non-commutative twisting in étale and motivic cohomology
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1257
EP - 1279
AB - This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups $H^1(\mathcal{O}_K[1/S],H^i(\overline{X},\mathbb{Q}_p(j)))$, where $X\rightarrow \operatorname{Spec}\mathcal{O}_K[1/S]$ is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to $H^i(\overline{X},\mathbb{Z}_p(j))$. Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
LA - eng
KW - Étale cohomology; motivic cohomology; non-commutative Iwasawa-theory; étale cohomology
UR - http://eudml.org/doc/10172
ER -

References

top
  1. M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, t.3, Lect. Notes. Math. 305 (1973), Springer MR354654
  2. S. Bloch, K. Kato, L -functions and Tamagawa numbers of motives, “The Grothendieck Festschrift”, Vol.I, Progress in Math. 86 (1990), 333-400, Birkhäuser, Boston Zbl0768.14001MR1086888
  3. J. Coates, R. Sujatha, Fine Selmer groups of elliptic curves over p -adic Lie extensions, Math. Annalen 331 (2005), 809-839 Zbl1197.11142MR2148798
  4. W. G. Dwyer, E. M. Friedlander, Algebraic and étale K -theory, Trans. Amer. Math. Soc. 292 (1985), 247-280 Zbl0581.14012MR805962
  5. J.-M. Fontaine, B. Perrin-Riou, Cohomologie galoisienne et valeurs des fontions L , Proceedings of Symposia in Pure Mathematics, part I 55 (1994), 599-706 Zbl0821.14013MR1265546
  6. T. Geisser, Motivic Cohomology over Dedekind rings, Math. Z. 248 (2004), 773-794 Zbl1062.14025MR2103541
  7. T. Geisser, M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. reine angew. Math. 530 (2001), 55-103 Zbl1023.14003MR1807268
  8. H. Gillet, Riemann-Roch theorems for higher algebraic K -theory, Adv. in Math. 40 (1981), 203-289 Zbl0478.14010MR624666
  9. A. Huber, G. Kings, Degeneration of  -adic Eisenstein classes and of the elliptic polylog, Invent. Math. 135 (1999), 545-594 Zbl0955.11027MR1669288
  10. A. Huber, G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings ICM II (2002), 149-162 Zbl1020.11067MR1957029
  11. A. Huber, J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27-133 Zbl0906.19004MR1643974
  12. U. Jannsen, On the -adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over (1989), Ihara Zbl0703.14010
  13. B. Kahn, K -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory 25 (2002), 99-138 Zbl1013.19001MR1906669
  14. K. Kato, Iwasawa theory and p -adic Hodge theory, Kodai Math. J. 16 (1993), 1-31 Zbl0798.11050MR1207986
  15. K. Kato, p -adic Hodge theory and values of zeta functions of modular forms. Cohomologies p -adiques et applications arithmétiques III, Astérisque 295 (2004), 117-290, Soc. Math. Fr. Zbl1142.11336MR2104361
  16. G. Kings, The Tamagawa number conjecture for CM elliptic curves, Invent. Math. 143 (2001), 571-627 Zbl1159.11311MR1817645
  17. M. Lazard, Groupes analytiques p -adiques, Pub. Math. IHÉS 26 (1965), 389-603 Zbl0139.02302MR209286
  18. M. Levine, K -theory and motivic cohomology of schemes 
  19. W. G. McCallum, R. T. Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. J. 120 (2004), 269-310 Zbl1047.11106MR2019977
  20. J. S. Milne, Étale Cohomology, (1980), Princeton University Press Zbl0433.14012MR559531
  21. F. Morel, V. Voevodsky, A 1 -homotopy theory of schemes, Pub. Math. IHÉS 90 (1999), 45-143 Zbl0983.14007MR1813224
  22. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren der math. Wiss. 323 (2000), Springer Zbl0948.11001MR1737196
  23. B. Perrin-Riou, p -adic L -functions and p -adic representations, SMF/AMS Texts and Monographs 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris Zbl0988.11055MR1743508
  24. D. Quillen, Finite generation of the groups K i of algebraic integers, 341 (1973), Springer Zbl0355.18018MR349812
  25. J.-P. Serre, Cohomologie galoisienne, 5 e éd. (1994), Springer Zbl0812.12002MR1324577
  26. C. Soulé, K -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295 Zbl0437.12008MR553999
  27. C. Soulé, Operations on étale K -theory. Applications, Lecture Notes in Math. 966 (1982), 271-303, Springer Zbl0507.14013MR689380
  28. C. Soulé, Opérations en K-théorie algébrique, Canad. J.Math. 37 (1985), 488-550 Zbl0575.14015MR787114
  29. C. Soulé, p -adic K -theory of elliptic curves, Duke 54 (1987), 249-269 Zbl0627.14010MR885785
  30. A. A. Suslin, Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies 143 (2000), Princeton University Press Zbl1019.14001MR1764203
  31. A. A. Suslin, V. Voevodsky, Relative cycles and Chow sheaves, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies 143 (2000), Princeton University Press Zbl1019.14004MR1764199
  32. R. W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup. 13 (1985), 437-552 Zbl0596.14012MR826102
  33. R. W. Thomason, Bott stability in Algebraic K -theory, in “Applications of Algebraic K -theory”, Contemp. Math. 55 (1986), 389-406 Zbl0594.18012MR862644
  34. V. Voevodsky, Motivic cohomology with Z / -coefficients Zbl1057.14028
  35. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), 351-355 Zbl1057.14026MR1883180
  36. C.A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38 (1994), Cambridge Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.