On non-commutative twisting in étale and motivic cohomology
Jens Hornbostel[1]; Guido Kings
- [1] Universität Regensburg NWF I, Mathematik 93040 Regensburg (Germany)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 1257-1279
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHornbostel, Jens, and Kings, Guido. "On non-commutative twisting in étale and motivic cohomology." Annales de l’institut Fourier 56.4 (2006): 1257-1279. <http://eudml.org/doc/10172>.
@article{Hornbostel2006,
abstract = {This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups $H^1(\mathcal\{O\}_K[1/S],H^i(\overline\{X\},\mathbb\{Q\}_p(j)))$, where $X\rightarrow \operatorname\{Spec\}\mathcal\{O\}_K[1/S]$ is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to $H^i(\overline\{X\},\mathbb\{Z\}_p(j))$. Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.},
affiliation = {Universität Regensburg NWF I, Mathematik 93040 Regensburg (Germany)},
author = {Hornbostel, Jens, Kings, Guido},
journal = {Annales de l’institut Fourier},
keywords = {Étale cohomology; motivic cohomology; non-commutative Iwasawa-theory; étale cohomology},
language = {eng},
number = {4},
pages = {1257-1279},
publisher = {Association des Annales de l’institut Fourier},
title = {On non-commutative twisting in étale and motivic cohomology},
url = {http://eudml.org/doc/10172},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Hornbostel, Jens
AU - Kings, Guido
TI - On non-commutative twisting in étale and motivic cohomology
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1257
EP - 1279
AB - This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups $H^1(\mathcal{O}_K[1/S],H^i(\overline{X},\mathbb{Q}_p(j)))$, where $X\rightarrow \operatorname{Spec}\mathcal{O}_K[1/S]$ is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to $H^i(\overline{X},\mathbb{Z}_p(j))$. Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
LA - eng
KW - Étale cohomology; motivic cohomology; non-commutative Iwasawa-theory; étale cohomology
UR - http://eudml.org/doc/10172
ER -
References
top- M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, t.3, Lect. Notes. Math. 305 (1973), Springer MR354654
- S. Bloch, K. Kato, -functions and Tamagawa numbers of motives, “The Grothendieck Festschrift”, Vol.I, Progress in Math. 86 (1990), 333-400, Birkhäuser, Boston Zbl0768.14001MR1086888
- J. Coates, R. Sujatha, Fine Selmer groups of elliptic curves over -adic Lie extensions, Math. Annalen 331 (2005), 809-839 Zbl1197.11142MR2148798
- W. G. Dwyer, E. M. Friedlander, Algebraic and étale -theory, Trans. Amer. Math. Soc. 292 (1985), 247-280 Zbl0581.14012MR805962
- J.-M. Fontaine, B. Perrin-Riou, Cohomologie galoisienne et valeurs des fontions , Proceedings of Symposia in Pure Mathematics, part I 55 (1994), 599-706 Zbl0821.14013MR1265546
- T. Geisser, Motivic Cohomology over Dedekind rings, Math. Z. 248 (2004), 773-794 Zbl1062.14025MR2103541
- T. Geisser, M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. reine angew. Math. 530 (2001), 55-103 Zbl1023.14003MR1807268
- H. Gillet, Riemann-Roch theorems for higher algebraic -theory, Adv. in Math. 40 (1981), 203-289 Zbl0478.14010MR624666
- A. Huber, G. Kings, Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math. 135 (1999), 545-594 Zbl0955.11027MR1669288
- A. Huber, G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings ICM II (2002), 149-162 Zbl1020.11067MR1957029
- A. Huber, J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27-133 Zbl0906.19004MR1643974
- U. Jannsen, On the -adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over (1989), Ihara Zbl0703.14010
- B. Kahn, -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory 25 (2002), 99-138 Zbl1013.19001MR1906669
- K. Kato, Iwasawa theory and -adic Hodge theory, Kodai Math. J. 16 (1993), 1-31 Zbl0798.11050MR1207986
- K. Kato, -adic Hodge theory and values of zeta functions of modular forms. Cohomologies -adiques et applications arithmétiques III, Astérisque 295 (2004), 117-290, Soc. Math. Fr. Zbl1142.11336MR2104361
- G. Kings, The Tamagawa number conjecture for CM elliptic curves, Invent. Math. 143 (2001), 571-627 Zbl1159.11311MR1817645
- M. Lazard, Groupes analytiques -adiques, Pub. Math. IHÉS 26 (1965), 389-603 Zbl0139.02302MR209286
- M. Levine, -theory and motivic cohomology of schemes
- W. G. McCallum, R. T. Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. J. 120 (2004), 269-310 Zbl1047.11106MR2019977
- J. S. Milne, Étale Cohomology, (1980), Princeton University Press Zbl0433.14012MR559531
- F. Morel, V. Voevodsky, -homotopy theory of schemes, Pub. Math. IHÉS 90 (1999), 45-143 Zbl0983.14007MR1813224
- J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren der math. Wiss. 323 (2000), Springer Zbl0948.11001MR1737196
- B. Perrin-Riou, -adic -functions and -adic representations, SMF/AMS Texts and Monographs 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris Zbl0988.11055MR1743508
- D. Quillen, Finite generation of the groups of algebraic integers, 341 (1973), Springer Zbl0355.18018MR349812
- J.-P. Serre, Cohomologie galoisienne, 5 e éd. (1994), Springer Zbl0812.12002MR1324577
- C. Soulé, -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295 Zbl0437.12008MR553999
- C. Soulé, Operations on étale -theory. Applications, Lecture Notes in Math. 966 (1982), 271-303, Springer Zbl0507.14013MR689380
- C. Soulé, Opérations en K-théorie algébrique, Canad. J.Math. 37 (1985), 488-550 Zbl0575.14015MR787114
- C. Soulé, -adic -theory of elliptic curves, Duke 54 (1987), 249-269 Zbl0627.14010MR885785
- A. A. Suslin, Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies 143 (2000), Princeton University Press Zbl1019.14001MR1764203
- A. A. Suslin, V. Voevodsky, Relative cycles and Chow sheaves, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies 143 (2000), Princeton University Press Zbl1019.14004MR1764199
- R. W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup. 13 (1985), 437-552 Zbl0596.14012MR826102
- R. W. Thomason, Bott stability in Algebraic -theory, in “Applications of Algebraic -theory”, Contemp. Math. 55 (1986), 389-406 Zbl0594.18012MR862644
- V. Voevodsky, Motivic cohomology with -coefficients Zbl1057.14028
- V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), 351-355 Zbl1057.14026MR1883180
- C.A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38 (1994), Cambridge Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.