Semicompleteness of homogeneous quadratic vector fields

Adolfo Guillot[1]

  • [1] Unidad Cuernavaca Instituto de Matemáticas UNAM Av. Universidad s/n, col. Lomas de Chamilpa C.P. 62210, Cuernavaca, Morelos (Mexico)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1583-1615
  • ISSN: 0373-0956

Abstract

top
We investigate the quadratic homogeneous holomorphic vector fields on  C n that are semicomplete, this is, those whose solutions are single-valued in their maximal definition domain. To a generic quadratic vector field we rationally associate some complex numbers that turn out to be integers in the semicomplete case, thus showing that the linear equivalence classes of semicomplete vector fields are contained in some sort of lattice in the space of linear equivalence classes of quadratic ones. We prove that the foliations of  C P n - 1 induced by semicomplete quadratic vector fields are linearizable in a neighborhood of their singular points and give some new families of examples in  C 3 . Finally, we classify the semicomplete isochoric vector fields in  C 3 having an isolated singularity at the origin.

How to cite

top

Guillot, Adolfo. "Semicompleteness of homogeneous quadratic vector fields." Annales de l’institut Fourier 56.5 (2006): 1583-1615. <http://eudml.org/doc/10185>.

@article{Guillot2006,
abstract = {We investigate the quadratic homogeneous holomorphic vector fields on $\mathbf\{C\}^n$ that are semicomplete, this is, those whose solutions are single-valued in their maximal definition domain. To a generic quadratic vector field we rationally associate some complex numbers that turn out to be integers in the semicomplete case, thus showing that the linear equivalence classes of semicomplete vector fields are contained in some sort of lattice in the space of linear equivalence classes of quadratic ones. We prove that the foliations of $\mathbf\{C\}\mathbf\{P\}^\{n-1\}$ induced by semicomplete quadratic vector fields are linearizable in a neighborhood of their singular points and give some new families of examples in $\mathbf\{C\}^3$. Finally, we classify the semicomplete isochoric vector fields in $\mathbf\{C\}^3$ having an isolated singularity at the origin.},
affiliation = {Unidad Cuernavaca Instituto de Matemáticas UNAM Av. Universidad s/n, col. Lomas de Chamilpa C.P. 62210, Cuernavaca, Morelos (Mexico)},
author = {Guillot, Adolfo},
journal = {Annales de l’institut Fourier},
keywords = {Complex differential equation; semicomplete vector field; holomorphic foliation; complex differential equation; classification; equivalence classes; singularity},
language = {eng},
number = {5},
pages = {1583-1615},
publisher = {Association des Annales de l’institut Fourier},
title = {Semicompleteness of homogeneous quadratic vector fields},
url = {http://eudml.org/doc/10185},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Guillot, Adolfo
TI - Semicompleteness of homogeneous quadratic vector fields
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1583
EP - 1615
AB - We investigate the quadratic homogeneous holomorphic vector fields on $\mathbf{C}^n$ that are semicomplete, this is, those whose solutions are single-valued in their maximal definition domain. To a generic quadratic vector field we rationally associate some complex numbers that turn out to be integers in the semicomplete case, thus showing that the linear equivalence classes of semicomplete vector fields are contained in some sort of lattice in the space of linear equivalence classes of quadratic ones. We prove that the foliations of $\mathbf{C}\mathbf{P}^{n-1}$ induced by semicomplete quadratic vector fields are linearizable in a neighborhood of their singular points and give some new families of examples in $\mathbf{C}^3$. Finally, we classify the semicomplete isochoric vector fields in $\mathbf{C}^3$ having an isolated singularity at the origin.
LA - eng
KW - Complex differential equation; semicomplete vector field; holomorphic foliation; complex differential equation; classification; equivalence classes; singularity
UR - http://eudml.org/doc/10185
ER -

References

top
  1. Paul Baum, Raoul Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279-342 Zbl0268.57011MR377923
  2. Grant Cairns, Étienne Ghys, The local linearization problem for smooth S L ( n ) -actions, Enseign. Math. (2) 43 (1997), 133-171 Zbl0914.57027MR1460126
  3. César Camacho, Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), 579-595 Zbl0503.32007MR657239
  4. D. Cerveau, A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two in CP ( n ) , n 3 , Ann. of Math. (2) 143 (1996), 577-612 Zbl0855.32015MR1394970
  5. P. Erdös, R. L. Graham, Old and new problems and results in combinatorial number theory, L’Enseignement Mathématique (1980), Université de Genève, Geneva Zbl0434.10001MR592420
  6. William Fulton, Joe Harris, Representation theory, (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
  7. É. Ghys, J.-C. Rebelo, Singularités des flots holomorphes II, Ann. Inst. Fourier (Grenoble) 47 (1997), 1117-1174 Zbl0938.32019MR1488247
  8. Adolfo Guillot, Champs quadratiques uniformisables, (2001) 
  9. Adolfo Guillot, Sur les exemples de Lins Neto de feuilletages algébriques, C. R. Math. Acad. Sci. Paris 334 (2002), 747-750 Zbl1004.37029MR1905033
  10. Adolfo Guillot, Un théorème de point fixe pour les endomorphismes de l’espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.) 35 (2004), 345-362 Zbl1085.58007MR2106309
  11. Adolfo Guillot, The Painlevé property for quasihomogenous systems and a many-body problem in the plane, Comm. Math. Phys. 256 (2005), 181-194 Zbl1069.81079MR2134340
  12. Adolfo Guillot, Sur les équations d’Halphen et les actions de S L 2 ( C ) , (2006) 
  13. R. C. Gunning, Lectures on Riemann surfaces, (1966), Princeton University Press, Princeton, N.J. Zbl0175.36801MR207977
  14. G.-H. Halphen, Sur certains systèmes d’équations différentielles, Comptes Rendus Hebdomadaires de l’Académie des Sciences XCII (1881), 1404-1406 
  15. Einar Hille, Ordinary differential equations in the complex domain, (1997), Dover Publications Inc., Mineola, NY Zbl0901.34001MR1452105
  16. L. Landau, E. Lifchitz, Physique théorique. Tome I. Mécanique, (1982), Éditions Mir, Moscou 
  17. Alcides Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. (4) 35 (2002), 231-266 Zbl1130.34301MR1914932
  18. Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502MR121424
  19. Julio C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), 411-428 Zbl0853.34002MR1393520
  20. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.