Optimal destabilizing vectors in some Gauge theoretical moduli problems
- [1] CMI, LAPT UMR 6632 39, rue Frédéric Joliot Curie 13453 Marseille Cedex 13 (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1805-1826
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBruasse, Laurent. "Optimal destabilizing vectors in some Gauge theoretical moduli problems." Annales de l’institut Fourier 56.6 (2006): 1805-1826. <http://eudml.org/doc/10192>.
@article{Bruasse2006,
abstract = {We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing $1$-parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal value of the so called “maximal weight function”. We give a complete description of these optimal destabilizing endomorphisms. Then we show how this principle may be applied to an other complex moduli problem: holomorphic pairs (i.e. holomorphic vector bundles coupled with morphisms with fixed source) over a complex curve. We get here a new version of the Harder-Narasimhan filtration theorem for the notion of $\tau $-stability. These results suggest that the principle holds in the whole gauge theoretical framework.},
affiliation = {CMI, LAPT UMR 6632 39, rue Frédéric Joliot Curie 13453 Marseille Cedex 13 (France)},
author = {Bruasse, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {GIT; optimal $1$-parameter subgroup; gauge theory; maximal weight map; complex moduli problem; stability; Harder-Narasimhan filtration; moment map; optimal 1-parameter subgroup; geometric invariant theory},
language = {eng},
number = {6},
pages = {1805-1826},
publisher = {Association des Annales de l’institut Fourier},
title = {Optimal destabilizing vectors in some Gauge theoretical moduli problems},
url = {http://eudml.org/doc/10192},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Bruasse, Laurent
TI - Optimal destabilizing vectors in some Gauge theoretical moduli problems
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1805
EP - 1826
AB - We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing $1$-parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal value of the so called “maximal weight function”. We give a complete description of these optimal destabilizing endomorphisms. Then we show how this principle may be applied to an other complex moduli problem: holomorphic pairs (i.e. holomorphic vector bundles coupled with morphisms with fixed source) over a complex curve. We get here a new version of the Harder-Narasimhan filtration theorem for the notion of $\tau $-stability. These results suggest that the principle holds in the whole gauge theoretical framework.
LA - eng
KW - GIT; optimal $1$-parameter subgroup; gauge theory; maximal weight map; complex moduli problem; stability; Harder-Narasimhan filtration; moment map; optimal 1-parameter subgroup; geometric invariant theory
UR - http://eudml.org/doc/10192
ER -
References
top- M. Atiyah, R. Bott, The Yang-Mills equations over a Riemann surface, Phil. Trans. R. Soc. 308 (1983), 523-615 Zbl0509.14014MR702806
- S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Diff. Geom. 33 (1991), 169-213 Zbl0697.32014MR1085139
- S. B. Bradlow, G. D. Daskalopoulos, R. A. Wentworth, Birational equivalences of vortex moduli, Topology 35 (1996), 731-748 Zbl0856.32019MR1396775
- L. Bruasse, Harder-Narasimhan filtration on non Kähler manifolds, Int. Journal of Maths 12 (2001), 579-594 Zbl1111.32303MR1843867
- L. Bruasse, Stabilité et filtration de Harder-Narasimhan, (2001) Zbl1111.32303
- L. Bruasse, Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans-torsion, Ann. Inst. Fourier 53 (2003), 539-562 Zbl1114.32010MR1990006
- L. Bruasse, A. Teleman, Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry, Ann. Inst. Fourier 55 (2005), 1017-1053 Zbl1093.32009MR2149409
- G. D. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geometry 36 (1992), 699-746 Zbl0785.58014MR1189501
- G. Harder, M. Narasimhan, On the cohomology groups of moduli spaces, Math. Ann. 212 (1975), 215-248 Zbl0324.14006MR364254
- G. R. Kempf, Instability in invariant theory, Ann. of Mathematics 108 (1978), 299-316 Zbl0406.14031MR506989
- F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31 (1984), Princeton University Press Zbl0553.14020MR766741
- M. Lübke, A. Teleman, The universal Kobayashi-Hitchin correspondance on Hermitian manifolds, (2004) Zbl1103.53014
- M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333 Zbl0438.14015MR615853
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, (1982), Springer-Verlag Zbl0504.14008MR1304906
- I. Mundet i Riera, Yang-Mills-Higgs theory for symplectic fibrations, (1999)
- I. Mundet i Riera, A Hitchin-Kobayashi correspondence for Kähler fibrations, J. reine angew. Maths (2000), 41-80 Zbl1002.53057MR1801657
- S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tôhoku Math. Journ. 36 (1984), 269-291 Zbl0567.14027MR742599
- S. Shatz, The decomposition and specialization of algebraic families of vector bundles, Composito. Math. 35 (1977), 163-187 Zbl0371.14010MR498573
- A. Teleman, Symplectic stability, analytic stability in non-algebraic complex geometry, Int. Journal of Maths 15 (2004), 183-209 Zbl1089.53058MR2055369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.