Displaying similar documents to “On the genus of reducible surfaces and degenerations of surfaces”

On the extendability of elliptic surfaces of rank two and higher

Angelo Felice Lopez, Roberto Muñoz, José Carlos Sierra (2009)

Annales de l’institut Fourier

Similarity:

We study threefolds X r having as hyperplane section a smooth surface with an elliptic fibration. We first give a general theorem about the possible embeddings of such surfaces with Picard number two. More precise results are then proved for Weierstrass fibrations, both of rank two and higher. In particular we prove that a Weierstrass fibration of rank two that is not a K3 surface is not hyperplane section of a locally complete intersection threefold and we give some conditions, for many...

Exceptional singular -homology planes

Karol Palka (2011)

Annales de l’institut Fourier

Similarity:

We consider singular -acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is 1 - or * -ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type A 1 and A 2 respectively.

Obstructions to deforming curves on a 3 -fold, II: Deformations of degenerate curves on a del Pezzo 3 -fold

Hirokazu Nasu (2010)

Annales de l’institut Fourier

Similarity:

We study the Hilbert scheme Hilb s c V of smooth connected curves on a smooth del Pezzo 3 -fold V . We prove that any degenerate curve C , any curve C contained in a smooth hyperplane section S of V , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) χ ( V , C ( S ) ) 1 and (ii) for every line on S such that C = , the normal bundle N / V is trivial (  N / V 𝒪 1 2 ). As a consequence, we prove an analogue (for Hilb s c V ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...