Billiard complexity in the hypercube
Nicolas Bedaride[1]; Pascal Hubert[2]
- [1] Fédération de recherches des unités de mathématiques de Marseille UMR 6632 Laboratoire d’Analyse Topologie et Probabilités Av. Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France)
- [2] Fédération de recherches des unités de mathématiques de Marseille UMR 6632 Laboratoire d’Analyse Topologie et Probabilités av. Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 719-738
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBedaride, Nicolas, and Hubert, Pascal. "Billiard complexity in the hypercube." Annales de l’institut Fourier 57.3 (2007): 719-738. <http://eudml.org/doc/10239>.
@article{Bedaride2007,
abstract = {We consider the billiard map in the hypercube of $\mathbb\{R\}^d$. We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that $n^\{3d-3\}$ is the order of magnitude of the complexity.},
affiliation = {Fédération de recherches des unités de mathématiques de Marseille UMR 6632 Laboratoire d’Analyse Topologie et Probabilités Av. Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France); Fédération de recherches des unités de mathématiques de Marseille UMR 6632 Laboratoire d’Analyse Topologie et Probabilités av. Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France)},
author = {Bedaride, Nicolas, Hubert, Pascal},
journal = {Annales de l’institut Fourier},
keywords = {Symbolic dynamic; billiard; words; complexity function; symbolic dynamic},
language = {eng},
number = {3},
pages = {719-738},
publisher = {Association des Annales de l’institut Fourier},
title = {Billiard complexity in the hypercube},
url = {http://eudml.org/doc/10239},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Bedaride, Nicolas
AU - Hubert, Pascal
TI - Billiard complexity in the hypercube
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 719
EP - 738
AB - We consider the billiard map in the hypercube of $\mathbb{R}^d$. We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that $n^{3d-3}$ is the order of magnitude of the complexity.
LA - eng
KW - Symbolic dynamic; billiard; words; complexity function; symbolic dynamic
UR - http://eudml.org/doc/10239
ER -
References
top- P. Arnoux, C. Mauduit, I. Shiokawa, J. Tamura, Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France 122 (1994), 1-12 Zbl0791.58034MR1259106
- Yu. Baryshnikov, Complexity of trajectories in rectangular billiards, Comm. Math. Phys. 174 (1995), 43-56 Zbl0839.11006MR1372799
- N. Bedaride, Billiard complexity in rational polyhedra, Regul. Chaotic Dyn. 8 (2003), 97-104 Zbl1023.37024MR1963971
- N. Bedaride, Entropy of polyhedral billiard, (2005) Zbl1200.37034
- N. Bedaride, A generalization of Baryshnikov’s formula., (2006)
- J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput. 3 (1993), 349-355 Zbl0802.68099MR1240390
- J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 67-88 Zbl0921.68065MR1440670
- J. Cassaigne, P. Hubert, S. Troubetzkoy, Complexity and growth for polygonal billiards, Ann. Inst. Fourier 52 (2002), 835-847 Zbl1115.37312MR1907389
- William Fulton, Intersection theory, Springer-Verlag 2 (1998) Zbl0885.14002MR1644323
- G. Galʼperin, T. Krüger, S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), 463-473 Zbl0924.58043MR1328732
- G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, (1979), The Clarendon Press Oxford University Press, New York Zbl0020.29201MR568909
- P. Hubert, Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France 123 (1995), 257-270 Zbl0836.58013MR1340290
- A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys. 111 (1987), 151-160 Zbl0631.58020MR896765
- H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems 10 (1990), 151-176 Zbl0706.30035MR1053805
- F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84 Zbl0728.68093MR1112109
- M. Morse, G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42 Zbl0022.34003MR745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.