Complexity and growth for polygonal billiards
J. Cassaigne[1]; Pascal Hubert[1]; Serge Troubetzkoy[2]
- [1] Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)
- [2] Centre de Physique Théorique, Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 835-847
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCassaigne, J., Hubert, Pascal, and Troubetzkoy, Serge. "Complexity and growth for polygonal billiards." Annales de l’institut Fourier 52.3 (2002): 835-847. <http://eudml.org/doc/115996>.
@article{Cassaigne2002,
abstract = {We establish a relationship between the word complexity and the number of generalized
diagonals for a polygonal billiard. We conclude that in the rational case the complexity
function has cubic upper and lower bounds. In the tiling case the complexity has cubic
asymptotic growth.},
affiliation = {Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France); Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France); Centre de Physique Théorique, Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)},
author = {Cassaigne, J., Hubert, Pascal, Troubetzkoy, Serge},
journal = {Annales de l’institut Fourier},
keywords = {complexity; polygonal billiards; generalized diagonals; bispecial words},
language = {eng},
number = {3},
pages = {835-847},
publisher = {Association des Annales de l'Institut Fourier},
title = {Complexity and growth for polygonal billiards},
url = {http://eudml.org/doc/115996},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Cassaigne, J.
AU - Hubert, Pascal
AU - Troubetzkoy, Serge
TI - Complexity and growth for polygonal billiards
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 835
EP - 847
AB - We establish a relationship between the word complexity and the number of generalized
diagonals for a polygonal billiard. We conclude that in the rational case the complexity
function has cubic upper and lower bounds. In the tiling case the complexity has cubic
asymptotic growth.
LA - eng
KW - complexity; polygonal billiards; generalized diagonals; bispecial words
UR - http://eudml.org/doc/115996
ER -
References
top- J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, J. Alg. Comp. 3 (1993), 349-355 Zbl0802.68099MR1240390
- C. Boldrighini, M. Keane, F. Marchetti, Billiards in polygons, Ann. Prob. 6 (1978), 532-540 Zbl0377.28014MR644840
- J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belgian Math. Soc. 4 (1997), 67-88 Zbl0921.68065MR1440670
- N. Chernov, S. Troubetzkoy, Ergodicity of billiards in polygons with pockets, Nonlinearity 11 (1998), 1095-1102 Zbl0906.58022MR1632602
- G. Galperin, T. Krüger, S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), 463-473 Zbl0924.58043MR1328732
- E. Gutkin, Billiards in polygons, Physica D 19 (1986), 311-333 Zbl0593.58016MR844706
- E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 174 (1995), 43-56 Zbl1081.37525MR1382759
- E. Gutkin, N. Haydn, Topological entropy of generalized interval exchanges, Bull. AMS 32 (1995), 50-57 Zbl0879.54023MR1273398
- E. Gutkin, S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems, Montevideo, Uruguay 362 (1996), Longman, Essex Zbl0904.58036
- G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, (1964), Oxford Univ. Press Zbl0058.03301MR67125
- P. Hubert, Dynamique symbolique des billards polygonaux rationnels, (1995)
- P. Hubert, Complexité des suites définies par des billards rationnels, Bull. Soc. Math. France 123 (1995), 257-270 Zbl0836.58013MR1340290
- P. Hubert, Propriétés combinatoires des suites définies par le billard dans les triangles pavants, Theoret. Comput. Sci. 164 (1996), 165-183 Zbl0871.68146MR1411203
- A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys. 111 (1987), 151-160 Zbl0631.58020MR896765
- H. Masur, The growth rate of a quadratic differential, Ergod. Th. Dyn. Sys. 10 (1990), 151-176 Zbl0706.30035MR1053805
- H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, vol. 1 (1988), Springer-Verlag Zbl0661.30034MR955824
- H. Masur, S. Tabachnikov, Rational billiards and flat structures, (1999) Zbl1057.37034MR1928530
- F. Mignosi, On the number of factors of Sturmian words, Theor. Comp. Sci. 82 (1991), 71-84 Zbl0728.68093MR1112109
- A. Nogueira, Orbit distribution on under the natural action of , (2000) Zbl1016.37003
- Ya. G. Sinai, Introduction to ergodic theory, (1976), Princeton Univ. Press Zbl0375.28011MR584788
- S. Tabachnikov, Billiards, Panoramas et Synthèses, (1995), Soc. Math. France Zbl0833.58001MR1328336
- S. Troubetzkoy, Complexity lower bounds for polygonal billiards, Chaos 8 (1998), 242-244 Zbl0986.37030MR1609769
- W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 553-583 Zbl0676.32006MR1005006
- W. Veech, The billiard in a regular polygon, Geom. Func. Anal. 2 (1992), 341-379 Zbl0760.58036MR1177316
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.