Complexity and growth for polygonal billiards

J. Cassaigne[1]; Pascal Hubert[1]; Serge Troubetzkoy[2]

  • [1] Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)
  • [2] Centre de Physique Théorique, Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 3, page 835-847
  • ISSN: 0373-0956

Abstract

top
We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.

How to cite

top

Cassaigne, J., Hubert, Pascal, and Troubetzkoy, Serge. "Complexity and growth for polygonal billiards." Annales de l’institut Fourier 52.3 (2002): 835-847. <http://eudml.org/doc/115996>.

@article{Cassaigne2002,
abstract = {We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.},
affiliation = {Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France); Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France); Centre de Physique Théorique, Institut de Mathématiques de Luminy, Case 907, 13288 Marseille Cedex 9 (France)},
author = {Cassaigne, J., Hubert, Pascal, Troubetzkoy, Serge},
journal = {Annales de l’institut Fourier},
keywords = {complexity; polygonal billiards; generalized diagonals; bispecial words},
language = {eng},
number = {3},
pages = {835-847},
publisher = {Association des Annales de l'Institut Fourier},
title = {Complexity and growth for polygonal billiards},
url = {http://eudml.org/doc/115996},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Cassaigne, J.
AU - Hubert, Pascal
AU - Troubetzkoy, Serge
TI - Complexity and growth for polygonal billiards
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 835
EP - 847
AB - We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.
LA - eng
KW - complexity; polygonal billiards; generalized diagonals; bispecial words
UR - http://eudml.org/doc/115996
ER -

References

top
  1. J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, J. Alg. Comp. 3 (1993), 349-355 Zbl0802.68099MR1240390
  2. C. Boldrighini, M. Keane, F. Marchetti, Billiards in polygons, Ann. Prob. 6 (1978), 532-540 Zbl0377.28014MR644840
  3. J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belgian Math. Soc. 4 (1997), 67-88 Zbl0921.68065MR1440670
  4. N. Chernov, S. Troubetzkoy, Ergodicity of billiards in polygons with pockets, Nonlinearity 11 (1998), 1095-1102 Zbl0906.58022MR1632602
  5. G. Galperin, T. Krüger, S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), 463-473 Zbl0924.58043MR1328732
  6. E. Gutkin, Billiards in polygons, Physica D 19 (1986), 311-333 Zbl0593.58016MR844706
  7. E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 174 (1995), 43-56 Zbl1081.37525MR1382759
  8. E. Gutkin, N. Haydn, Topological entropy of generalized interval exchanges, Bull. AMS 32 (1995), 50-57 Zbl0879.54023MR1273398
  9. E. Gutkin, S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems, Montevideo, Uruguay 362 (1996), Longman, Essex Zbl0904.58036
  10. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, (1964), Oxford Univ. Press Zbl0058.03301MR67125
  11. P. Hubert, Dynamique symbolique des billards polygonaux rationnels, (1995) 
  12. P. Hubert, Complexité des suites définies par des billards rationnels, Bull. Soc. Math. France 123 (1995), 257-270 Zbl0836.58013MR1340290
  13. P. Hubert, Propriétés combinatoires des suites définies par le billard dans les triangles pavants, Theoret. Comput. Sci. 164 (1996), 165-183 Zbl0871.68146MR1411203
  14. A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys. 111 (1987), 151-160 Zbl0631.58020MR896765
  15. H. Masur, The growth rate of a quadratic differential, Ergod. Th. Dyn. Sys. 10 (1990), 151-176 Zbl0706.30035MR1053805
  16. H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, vol. 1 (1988), Springer-Verlag Zbl0661.30034MR955824
  17. H. Masur, S. Tabachnikov, Rational billiards and flat structures, (1999) Zbl1057.37034MR1928530
  18. F. Mignosi, On the number of factors of Sturmian words, Theor. Comp. Sci. 82 (1991), 71-84 Zbl0728.68093MR1112109
  19. A. Nogueira, Orbit distribution on 2 under the natural action of S L ( 2 , ) , (2000) Zbl1016.37003
  20. Ya. G. Sinai, Introduction to ergodic theory, (1976), Princeton Univ. Press Zbl0375.28011MR584788
  21. S. Tabachnikov, Billiards, Panoramas et Synthèses, (1995), Soc. Math. France Zbl0833.58001MR1328336
  22. S. Troubetzkoy, Complexity lower bounds for polygonal billiards, Chaos 8 (1998), 242-244 Zbl0986.37030MR1609769
  23. W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 553-583 Zbl0676.32006MR1005006
  24. W. Veech, The billiard in a regular polygon, Geom. Func. Anal. 2 (1992), 341-379 Zbl0760.58036MR1177316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.