Complexité de suites définies par des billards rationnels

Pascal Hubert

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 2, page 257-270
  • ISSN: 0037-9484

How to cite

top

Hubert, Pascal. "Complexité de suites définies par des billards rationnels." Bulletin de la Société Mathématique de France 123.2 (1995): 257-270. <http://eudml.org/doc/87717>.

@article{Hubert1995,
author = {Hubert, Pascal},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convex rational billiard; complexity; trajectory},
language = {fre},
number = {2},
pages = {257-270},
publisher = {Société mathématique de France},
title = {Complexité de suites définies par des billards rationnels},
url = {http://eudml.org/doc/87717},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Hubert, Pascal
TI - Complexité de suites définies par des billards rationnels
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 2
SP - 257
EP - 270
LA - fre
KW - convex rational billiard; complexity; trajectory
UR - http://eudml.org/doc/87717
ER -

References

top
  1. [A]ARNOUX (P.). — Ergodicité générique des billards polygonaux, d'après Kerckhoff, Masur, Smillie, Séminaire Bourbaki, t. 696, 1988, p. 203-221. Zbl0671.58023MR90c:58097
  2. [AMST]ARNOUX (P.), MAUDUIT (C.), SHIOKAWA (I.) and TAMURA (J.). — Complexity of sequences defined by billiards in the cube, Bull. Soc. Math. France, t. 122, 1994, p. 1-12. Zbl0791.58034MR94m:11028
  3. [AR]ARNOUX (P.) et RAUZY (G.). — Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France, t. 119, n° 2, 1991, p. 199-215. Zbl0789.28011MR92k:58072
  4. [BKM]BOLDRIGINI (C.), KEANE (M.) and MARCHETTI (F.). — Billiards in polygons, Annals of Probability, t. 6, 1978, p. 532-540. Zbl0377.28014MR58 #31007b
  5. [CFS]CORNFELD (I.P.), FORMIN (S.V.) and SINAI (Ya.G.). — Ergodic theory, Springer-Verlag, 1982. Zbl0493.28007
  6. [HM]HEDLUND (G.A.) and MORSE (M.). — Symbolic Dynamics II, Sturmian trajectories, Amer. J. Math., t. 62, 1940, p. 1-42. Zbl0022.34003MR1,123dJFM66.0188.03
  7. [K]KATOK (A.). — The growth rate for the number of singular and periodic orbits for a polygonal billiard, Commun. Math. Phys., t. 111, 1987, p. 151-160. Zbl0631.58020MR88g:58162
  8. [KMS]KERCKHOFF (S.), MASUR (H.) and SMILLIE (J.). — Ergodicity of billiard flows and quadratic differentials, Ann. of Math., t. 124, 1986, p. 293-311. Zbl0637.58010MR88f:58122
  9. [NST]NISHIOKA (N.), SHIOKAWA (I.) and TAMURA (J.). — Arithmetical properties of a certain power series, J. Number Theory, t. 42, 1992, p. 61-87. Zbl0770.11039MR93i:11086
  10. [ZK]ZEMLYAKOF (A.N.) and KATOK (A.B.). — Topological transivity of billiards in polygons, Math. Notes, t. 18, n° 2, 1976, p. 760-764. Zbl0323.58012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.