The Drinfeld Modular Jacobian has connected fibers
- [1] Tata Institute of Fundamental Research School of Mathematics Dr Homi Bhabha Rd Mumbai 400 005 (India)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 4, page 1217-1252
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShastry, Sreekar M.. "The Drinfeld Modular Jacobian $J_1(n)$ has connected fibers." Annales de l’institut Fourier 57.4 (2007): 1217-1252. <http://eudml.org/doc/10256>.
@article{Shastry2007,
abstract = {We study the integral model of the Drinfeld modular curve $X_1(n)$ for a prime $n\in \mathbb\{F\}_q[T]$. A function field analogue of the theory of Igusa curves is introduced to describe its reduction mod $n$. A result describing the universal deformation ring of a pair consisting of a supersingular Drinfeld module and a point of order $n$ in terms of the Hasse invariant of that Drinfeld module is proved. We then apply Jung-Hirzebruch resolution for arithmetic surfaces to produce a regular model of $X_1(n)$ which, after contractions in the special fiber, gives a regular model with geometrically integral fiber over $n$. Thus the mod $n$ component group of $J_1(n)$ is trivial, i.e. $J_1(n)$ has connected fibers.},
affiliation = {Tata Institute of Fundamental Research School of Mathematics Dr Homi Bhabha Rd Mumbai 400 005 (India)},
author = {Shastry, Sreekar M.},
journal = {Annales de l’institut Fourier},
keywords = {Component groups; Drinfeld modular curves; Igusa curves; component groups},
language = {eng},
number = {4},
pages = {1217-1252},
publisher = {Association des Annales de l’institut Fourier},
title = {The Drinfeld Modular Jacobian $J_1(n)$ has connected fibers},
url = {http://eudml.org/doc/10256},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Shastry, Sreekar M.
TI - The Drinfeld Modular Jacobian $J_1(n)$ has connected fibers
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1217
EP - 1252
AB - We study the integral model of the Drinfeld modular curve $X_1(n)$ for a prime $n\in \mathbb{F}_q[T]$. A function field analogue of the theory of Igusa curves is introduced to describe its reduction mod $n$. A result describing the universal deformation ring of a pair consisting of a supersingular Drinfeld module and a point of order $n$ in terms of the Hasse invariant of that Drinfeld module is proved. We then apply Jung-Hirzebruch resolution for arithmetic surfaces to produce a regular model of $X_1(n)$ which, after contractions in the special fiber, gives a regular model with geometrically integral fiber over $n$. Thus the mod $n$ component group of $J_1(n)$ is trivial, i.e. $J_1(n)$ has connected fibers.
LA - eng
KW - Component groups; Drinfeld modular curves; Igusa curves; component groups
UR - http://eudml.org/doc/10256
ER -
References
top- A. Altman, S. Kleiman, Introduction to Grothendieck duality theory, (1970), Springer-Verlag, Berlin Zbl0215.37201MR274461
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
- B. Conrad, B. Edixhoven, W. Stein, has connected fibers, Doc. Math. 8 (2003), 331-408 (electronic) Zbl1101.14311MR2029169
- P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 143-316. Lecture Notes in Math., Vol. 349, Springer, Berlin Zbl0281.14010MR330050
- V. G. Drinfeld, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594-627, 656 Zbl0321.14014MR384707
- J.-M. Fontaine, Groupes -divisibles sur les corps locaux, (1977), Société Mathématique de France, Paris Zbl0377.14009MR498610
- E. Freitag, R. Kiehl, Étale cohomology and the Weil conjecture, 13 (1988), Springer-Verlag, Berlin Zbl0643.14012MR926276
- E.-U. Gekeler, Zur Arithmetik von Drinfeld-Moduln, Math. Ann. 262 (1983), 167-182 Zbl0536.14028MR690193
- E.-U. Gekeler, Über Drinfeldsche Modulkurven vom Hecke-Typ, Compositio Math. 57 (1986), 219-236 Zbl0599.14032MR827352
- E.-U. Gekeler, de Rham cohomology and the Gauss-Manin connection for Drinfeld modules, -adic analysis (Trento, 1989) 1454 (1990), 223-255, Springer, Berlin Zbl0735.14016MR1094856
- E.-U. Gekeler, de Rham cohomology for Drinfeld modules, Séminaire de Théorie des Nombres, Paris 1988–1989 91 (1990), 57-85, Birkhäuser Boston, Boston, MA Zbl0728.14024MR1104700
- E.-U. Gekeler, On finite Drinfeld modules, J. Algebra 141 (1991), 187-203 Zbl0731.11034MR1118323
- D. Goss, -adic Eisenstein series for function fields, Compositio Math. 41 (1980), 3-38 Zbl0422.10020MR578049
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965) Zbl0135.39701MR199181
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III., Inst. Hautes Études Sci. Publ. Math. (1966) Zbl0144.19904MR217086
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Inst. Hautes Études Sci. Publ. Math. (1967) Zbl0153.22301MR238860
- A. Grothendieck, Revêtements étales et groupe fondamental, (1971), Springer-Verlag, Berlin MR354651
- M. Hazewinkel, Formal groups and applications, 78 (1978), Academic Press Inc., New York Zbl0454.14020MR506881
- J. E. Humphreys, Introduction to Lie algebras and representation theory, 9 (1978), Springer-Verlag, New York Zbl0254.17004MR499562
- D. Jeon, C.H. Kim, On the Drinfeld modular curves , J. Number Theory 102 (2003), 214-222 Zbl1052.11041MR1997789
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton University Press, Princeton, NJ Zbl0576.14026MR772569
- G. Laumon, Cohomology of Drinfeld modular varieties. Part I, 41 (1996), Cambridge University Press, Cambridge Zbl0837.14018MR1381898
- T. Lehmkuhl, Compactification of the Drinfeld Modular Surfaces Zbl1179.11014
- Q. Liu, Algebraic geometry and arithmetic curves, 6 (2002), Oxford University Press, Oxford Zbl0996.14005MR1917232
- H. Matsumura, Commutative ring theory, 8 (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
- M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
- Y. Taguchi, Semi-simplicity of the Galois representations attached to Drinfeld modules over fields of “infinite characteristics”, J. Number Theory 44 (1993), 292-314 Zbl0781.11024
- J. T. Tate, -divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) (1967), 158-183, Springer, Berlin Zbl0157.27601MR231827
- J. Teitelbaum, Modular symbols for , Duke Math. J. 68 (1992), 271-295 Zbl0777.11021MR1191561
- Y. Yasufuku, Deformation Theory of Formal Modules, (2000)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.