On proper discs in complex manifolds

Barbara Drinovec Drnovšek[1]

  • [1] University of Ljubljana Institute of Mathematics, Physics and Mechanics Jadranska 19 SI-1000 Ljubljana (Slovenia)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1521-1535
  • ISSN: 0373-0956

Abstract

top
Let X be a complex manifold of dimension at least 2 which has an exhaustion function whose Levi form has at each point at least 2 strictly positive eigenvalues. We construct proper holomorphic discs in X through any given point and in any given direction.

How to cite

top

Drinovec Drnovšek, Barbara. "On proper discs in complex manifolds." Annales de l’institut Fourier 57.5 (2007): 1521-1535. <http://eudml.org/doc/10268>.

@article{Drinovec2007,
abstract = {Let $X$ be a complex manifold of dimension at least $2$ which has an exhaustion function whose Levi form has at each point at least $2$ strictly positive eigenvalues. We construct proper holomorphic discs in $X$ through any given point and in any given direction.},
affiliation = {University of Ljubljana Institute of Mathematics, Physics and Mechanics Jadranska 19 SI-1000 Ljubljana (Slovenia)},
author = {Drinovec Drnovšek, Barbara},
journal = {Annales de l’institut Fourier},
keywords = {Complex manifolds; proper holomorphic discs; complex manifolds},
language = {eng},
number = {5},
pages = {1521-1535},
publisher = {Association des Annales de l’institut Fourier},
title = {On proper discs in complex manifolds},
url = {http://eudml.org/doc/10268},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Drinovec Drnovšek, Barbara
TI - On proper discs in complex manifolds
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1521
EP - 1535
AB - Let $X$ be a complex manifold of dimension at least $2$ which has an exhaustion function whose Levi form has at each point at least $2$ strictly positive eigenvalues. We construct proper holomorphic discs in $X$ through any given point and in any given direction.
LA - eng
KW - Complex manifolds; proper holomorphic discs; complex manifolds
UR - http://eudml.org/doc/10268
ER -

References

top
  1. Mihnea Colţoiu, q -convexity. A survey, Complex analysis and geometry (Trento, 1995) 366 (1997), 83-93, Longman, Harlow Zbl0883.32016MR1477441
  2. Avner Dor, A domain in C m not containing any proper image of the unit disc, Math. Z. 222 (1996), 615-625 Zbl0864.32018MR1406270
  3. Barbara Drinovec-Drnovšek, Franc Forstnerič, Holomorphic curves in complex spaces Zbl1133.32002
  4. Franc Forstnerič, Josip Globevnik, Discs in pseudoconvex domains, Comment. Math. Helv. 67 (1992), 129-145 Zbl0779.32016MR1144617
  5. Franc Forstnerič, Josip Globevnik, Proper holomorphic discs in 2 , Math. Res. Lett. 8 (2001), 257-274 Zbl1027.32018MR1839476
  6. Josip Globevnik, Discs in Stein manifolds, Indiana Univ. Math. J. 49 (2000), 553-574 Zbl0974.32017MR1793682
  7. Hans Grauert, Theory of q -convexity and q -concavity, Several complex variables, VII 74 (1994), 259-284, Springer, Berlin Zbl0806.32004MR1326623
  8. Robert Everist Greene, Hung Hsi Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble) 25 (1975), 215-235 Zbl0307.31003MR382701
  9. Gennadi M. Henkin, Jürgen Leiterer, Andreotti-Grauert theory by integral formulas, 74 (1988), Birkhäuser Boston Inc., Boston, MA Zbl0654.32002MR986248
  10. Lars Hörmander, An introduction to complex analysis in several variables, (1973), North-Holland Publishing Co., Amsterdam Zbl0271.32001MR344507
  11. Finnur Lárusson, Ragnar Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39 Zbl0901.31004MR1637837
  12. Jean-Pierre Rosay, Approximation of non-holomorphic maps, and Poletsky theory of discs, J. Korean Math. Soc. 40 (2003), 423-434 Zbl1040.32015MR1973910
  13. Jean-Pierre Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157-169 Zbl1033.31006MR1970025
  14. H. L. Royden, The extension of regular holomorphic maps, Proc. Amer. Math. Soc. 43 (1974), 306-310 Zbl0292.32019MR335851
  15. Walter Rudin, Real and complex analysis, (1987), McGraw-Hill Book Co., New York Zbl0925.00005MR924157

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.