Displaying similar documents to “On proper discs in complex manifolds”

The fixed points of holomorphic maps on a convex domain

Do Duc Thai (1992)

Annales Polonici Mathematici

Similarity:

We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in n then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.

On Halphen’s Theorem and some generalizations

Alcides Lins Neto (2006)

Annales de l’institut Fourier

Similarity:

Let M n be a germ at 0 m of an irreducible analytic set of dimension n , where n 2 and 0 is a singular point of M . We study the question: when does there exist a germ of holomorphic map φ : ( n , 0 ) ( M , 0 ) such that φ - 1 ( 0 ) = { 0 } ? We prove essentialy three results. In Theorem 1 we consider the case where M is a quasi-homogeneous complete intersection of k polynomials F = ( F 1 , ... , F k ) , that is there exists a linear holomorphic vector field X on m , with eigenvalues λ 1 , ... , λ m + such that X ( F T ) = U · F T , where U is a k × k matrix with entries in 𝒪 m . We prove that if...

Schwarz Reflection Principle, Boundary Regularity and Compactness for J -Complex Curves

Sergey Ivashkovich, Alexandre Sukhov (2010)

Annales de l’institut Fourier

Similarity:

We establish the Schwarz Reflection Principle for J -complex discs attached to a real analytic J -totally real submanifold of an almost complex manifold with real analytic J . We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in 𝒞 k , α -classes.