Symplectic torus actions with coisotropic principal orbits
Johannes Jisse Duistermaat[1]; Alvaro Pelayo[2]
- [1] Universiteit Utrecht Mathematisch Instituut P.O. Box 80010 3508 TA Utrecht (The Netherlands)
- [2] Massachusetts Institute of Technology Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139–4307 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2239-2327
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDuistermaat, Johannes Jisse, and Pelayo, Alvaro. "Symplectic torus actions with coisotropic principal orbits." Annales de l’institut Fourier 57.7 (2007): 2239-2327. <http://eudml.org/doc/10297>.
@article{Duistermaat2007,
abstract = {In this paper we completely classify symplectic actions of a torus $T$ on a compact connected symplectic manifold $(M,\sigma )$ when some, hence every, principal orbit is a coisotropic submanifold of $(M,\sigma )$. That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian, we develop new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and Benoist. More specifically, we prove that there is a well-defined notion of constant vector fields on the orbit space $M/T$. Using a generalization of the Tietze-Nakajima theorem to what we call $V$-parallel spaces, we obtain that $M/T$ is isomorphic to the Cartesian product of a Delzant polytope with a torus.We then construct special lifts of the constant vector fields on $M/T$, in terms of which the model of the symplectic manifold with the torus action is defined.},
affiliation = {Universiteit Utrecht Mathematisch Instituut P.O. Box 80010 3508 TA Utrecht (The Netherlands); Massachusetts Institute of Technology Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139–4307 (USA)},
author = {Duistermaat, Johannes Jisse, Pelayo, Alvaro},
journal = {Annales de l’institut Fourier},
keywords = {Symplectic; torus actions; coisotropic orbits; classification; symplectic},
language = {eng},
number = {7},
pages = {2239-2327},
publisher = {Association des Annales de l’institut Fourier},
title = {Symplectic torus actions with coisotropic principal orbits},
url = {http://eudml.org/doc/10297},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Duistermaat, Johannes Jisse
AU - Pelayo, Alvaro
TI - Symplectic torus actions with coisotropic principal orbits
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2239
EP - 2327
AB - In this paper we completely classify symplectic actions of a torus $T$ on a compact connected symplectic manifold $(M,\sigma )$ when some, hence every, principal orbit is a coisotropic submanifold of $(M,\sigma )$. That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian, we develop new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and Benoist. More specifically, we prove that there is a well-defined notion of constant vector fields on the orbit space $M/T$. Using a generalization of the Tietze-Nakajima theorem to what we call $V$-parallel spaces, we obtain that $M/T$ is isomorphic to the Cartesian product of a Delzant polytope with a torus.We then construct special lifts of the constant vector fields on $M/T$, in terms of which the model of the symplectic manifold with the torus action is defined.
LA - eng
KW - Symplectic; torus actions; coisotropic orbits; classification; symplectic
UR - http://eudml.org/doc/10297
ER -
References
top- M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 Zbl0482.58013MR642416
- M. Audin, Torus Actions on Symplectic Manifolds, 93 (2004), Birkhäuser Verlag, Basel Zbl1062.57040MR2091310
- L. Auslander, The structure of complete locally affine manifolds, Topology 3 (1964), 131-139 Zbl0136.43102MR161255
- L. Auslander, L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. 62 (1955), 139-151 Zbl0065.37603MR72518
- Y. Benoist, Correction to “Actions symplectiques de groupes compacts” Zbl1157.37328
- Y. Benoist, Actions symplectiques de groupes compacts, Geometriae Dedicata 89 (2002), 181-245 Zbl1001.37041MR1890958
- C. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518 Zbl0672.53036MR976592
- R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, 82 (1982), Springer-Verlag, New York, Heidelberg, Berlin Zbl0496.55001MR658304
- É Cartan, Sur les nombres de Betti des espaces de groupes clos, Œuvres, partie I, vol. 2, 999–1001 187 (1928), 196-198, C.R. Acad. Sc. Zbl54.0604.01
- V. I. Danilov, The geometry of toric varieties, Russ. Math. Surveys 33 (1978), 97-154 Zbl0425.14013MR495499
- T. Delzant, Hamiltoniens périodiques et image convex de l’application moment, Bull. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029
- J. J. Duistermaat, Equivariant cohomology and stationary phase, Contemp. Math. 179 (1994), 45-62 Zbl0852.57029MR1319601
- J. J. Duistermaat, The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator, (1996), Birkhäuser, Boston Zbl0858.58045MR1365745
- J. J Duistermaat, G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259-268 Zbl0503.58015MR674406
- J. J Duistermaat, J. A. C. Kolk, Lie Groups, (2000), Universitext, Springer, Berlin Zbl0955.22001MR1738431
- M. Fernández, M. J. Gotay, A. Gray, Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212 Zbl0656.53034MR955011
- A. Giacobbe, Convexity of multi-valued momentum maps, Geometriae Dedicata 111 (2005), 1-22 Zbl1115.53059MR2155173
- V. L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), 625-640 Zbl0759.57023MR1175727
- M. Greenberg, Lectures on Algebraic Topology, (1967), W.A. Benjamin, New York, Amsterdam Zbl0169.54403MR215295
- V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian -Spaces, 122 (1994), Progress in Mathematics (Boston, Mass.), Boston, Basel, Berlin Zbl0828.58001MR1301331
- V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, (1996), Cambridge Univ. Press., Cambridge Zbl0870.58023MR1414677
- V. Guillemin, S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513 Zbl0503.58017MR664117
- V. Guillemin, S. Sternberg, Multiplicity-free spaces, J. Diff. Geom. 19 (1984), 31-56 Zbl0548.58017MR739781
- V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
- A. Haefliger, É Salem, Actions of tori on orbifolds, Ann. Global Anal. Geom. 9 (1991), 37-59 Zbl0733.57020MR1116630
- T. W. Hungerford, Algebra, (1974), Springer-Verlag, New York Zbl0442.00002MR600654
- Y. Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Memoirs Amer. Math. Soc. 141 (1999) Zbl0982.70011MR1612833
- Y. Karshon, S. Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc. 353 (2001), 4831-4861 Zbl0992.53062MR1852084
- V. Klee, Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466 Zbl0042.36201MR44014
- K. Kodaira, On the structure of compact analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798 Zbl0137.17501MR187255
- M. Kogan, On completely integrable systems with local torus actions, Ann. Global Anal. Geom. 15 (1997), 543-553 Zbl0904.58029MR1608655
- J. L. Koszul, Sur certains groupes de transformations de Lie, Colloques Int. Centre Nat. Rech. Sci. 52 (1953), 137-141 Zbl0101.16201MR59919
- E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds, Trans. Amer. Math. Soc. 349 (1997), 4201-4230 Zbl0897.58016MR1401525
- N. C. Leung, M. Symington, Almost toric symplectic four-manifolds, (2003) Zbl1197.53103
- S. MacLane, Categories for the Working Mathematician, 5 (1971, 1998), Springer-Verlag, New York Zbl0705.18001MR1712872
- C. M. Marle, Classification des actions hamiltoniennes au voisinage d’une orbite, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 249-252 Zbl0588.58026
- J. N. Mather, Stability of mappings: II. Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291 Zbl0177.26002MR259953
- D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), 149-160 Zbl0696.53023MR1029424
- D. McDuff, D. Salamon, Introduction to Symplectic Topology. 2nd ed., (1998), Oxford Mathematical Monographs. New York, NY: Oxford University Press Zbl0844.58029MR1698616
- Transformation Groups. Symplectic Torus Actions and Toric Manifolds, (2005), MukherjeeG.G., New Delhi Zbl1109.14001MR2214284
- S. Nakajima, Über konvexe Kurven und Flächen., Tôhoku Math. J. 29 (1928), 227-230
- S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Russ. Math. Surveys 37 (1982), 1-56 Zbl0571.58011MR676612
- P. Orlik, F. Raymond, Actions of the torus on 4-manifolds, I, Trans. Amer. Math. Soc. 152 (1970), 531-559 Zbl0216.20202MR268911
- J.-P. Ortega, T. S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (2002), 81-93 Zbl1072.53541MR1894237
- J.-P. Ortega, T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, 222 (2004), Birkhäuser, Boston, MA Zbl1241.53069MR2021152
- R. S. Palais, T. E. Stewart, Torus bundles over a torus, Proc. Amer. Math. Soc. 12 (1961), 26-29 Zbl0102.38702MR123638
- P. S. Pao, The topological structure of 4-manifolds with effective torus actions, I, Trans. Amer. Math. Soc. 227 (1977), 279-317 Zbl0343.57023MR431231
- A. Pelayo, Symplectic actions of two-tori on four-manifolds Zbl1189.53081
- R. T. Rockafellar, Convex Analysis, (1970), Princeton University Press, Princeton, New Jersey Zbl0193.18401MR274683
- M. Symington, Four dimensions from two in symplectic topology, Proc. Sympos. Pure Math. 71 (2003), 153-208, Amer. Math. Soc., Providence, RI Zbl1049.57016MR2024634
- W. P. Thurston, Some examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468 Zbl0324.53031MR402764
- H. Tietze, Über Konvixität im Kleinen und im Großen und über gewisse den Punkten einer Menge zugeordete Dimensionszahlen, Math. Z. 28 (1928), 697-707 Zbl54.0797.01MR1544985
- H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160 Zbl0063.08235MR7783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.