Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat[1]; Alvaro Pelayo[2]

  • [1] Universiteit Utrecht Mathematisch Instituut P.O. Box 80010 3508 TA Utrecht (The Netherlands)
  • [2] Massachusetts Institute of Technology Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139–4307 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2239-2327
  • ISSN: 0373-0956

Abstract

top
In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian, we develop new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and Benoist. More specifically, we prove that there is a well-defined notion of constant vector fields on the orbit space M / T . Using a generalization of the Tietze-Nakajima theorem to what we call V -parallel spaces, we obtain that M / T is isomorphic to the Cartesian product of a Delzant polytope with a torus.We then construct special lifts of the constant vector fields on M / T , in terms of which the model of the symplectic manifold with the torus action is defined.

How to cite

top

Duistermaat, Johannes Jisse, and Pelayo, Alvaro. "Symplectic torus actions with coisotropic principal orbits." Annales de l’institut Fourier 57.7 (2007): 2239-2327. <http://eudml.org/doc/10297>.

@article{Duistermaat2007,
abstract = {In this paper we completely classify symplectic actions of a torus $T$ on a compact connected symplectic manifold $(M,\sigma )$ when some, hence every, principal orbit is a coisotropic submanifold of $(M,\sigma )$. That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian, we develop new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and Benoist. More specifically, we prove that there is a well-defined notion of constant vector fields on the orbit space $M/T$. Using a generalization of the Tietze-Nakajima theorem to what we call $V$-parallel spaces, we obtain that $M/T$ is isomorphic to the Cartesian product of a Delzant polytope with a torus.We then construct special lifts of the constant vector fields on $M/T$, in terms of which the model of the symplectic manifold with the torus action is defined.},
affiliation = {Universiteit Utrecht Mathematisch Instituut P.O. Box 80010 3508 TA Utrecht (The Netherlands); Massachusetts Institute of Technology Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139–4307 (USA)},
author = {Duistermaat, Johannes Jisse, Pelayo, Alvaro},
journal = {Annales de l’institut Fourier},
keywords = {Symplectic; torus actions; coisotropic orbits; classification; symplectic},
language = {eng},
number = {7},
pages = {2239-2327},
publisher = {Association des Annales de l’institut Fourier},
title = {Symplectic torus actions with coisotropic principal orbits},
url = {http://eudml.org/doc/10297},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Duistermaat, Johannes Jisse
AU - Pelayo, Alvaro
TI - Symplectic torus actions with coisotropic principal orbits
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2239
EP - 2327
AB - In this paper we completely classify symplectic actions of a torus $T$ on a compact connected symplectic manifold $(M,\sigma )$ when some, hence every, principal orbit is a coisotropic submanifold of $(M,\sigma )$. That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian, we develop new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and Benoist. More specifically, we prove that there is a well-defined notion of constant vector fields on the orbit space $M/T$. Using a generalization of the Tietze-Nakajima theorem to what we call $V$-parallel spaces, we obtain that $M/T$ is isomorphic to the Cartesian product of a Delzant polytope with a torus.We then construct special lifts of the constant vector fields on $M/T$, in terms of which the model of the symplectic manifold with the torus action is defined.
LA - eng
KW - Symplectic; torus actions; coisotropic orbits; classification; symplectic
UR - http://eudml.org/doc/10297
ER -

References

top
  1. M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 Zbl0482.58013MR642416
  2. M. Audin, Torus Actions on Symplectic Manifolds, 93 (2004), Birkhäuser Verlag, Basel Zbl1062.57040MR2091310
  3. L. Auslander, The structure of complete locally affine manifolds, Topology 3 (1964), 131-139 Zbl0136.43102MR161255
  4. L. Auslander, L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. 62 (1955), 139-151 Zbl0065.37603MR72518
  5. Y. Benoist, Correction to “Actions symplectiques de groupes compacts” Zbl1157.37328
  6. Y. Benoist, Actions symplectiques de groupes compacts, Geometriae Dedicata 89 (2002), 181-245 Zbl1001.37041MR1890958
  7. C. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518 Zbl0672.53036MR976592
  8. R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, 82 (1982), Springer-Verlag, New York, Heidelberg, Berlin Zbl0496.55001MR658304
  9. É Cartan, Sur les nombres de Betti des espaces de groupes clos, Œuvres, partie I, vol. 2, 999–1001 187 (1928), 196-198, C.R. Acad. Sc. Zbl54.0604.01
  10. V. I. Danilov, The geometry of toric varieties, Russ. Math. Surveys 33 (1978), 97-154 Zbl0425.14013MR495499
  11. T. Delzant, Hamiltoniens périodiques et image convex de l’application moment, Bull. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029
  12. J. J. Duistermaat, Equivariant cohomology and stationary phase, Contemp. Math. 179 (1994), 45-62 Zbl0852.57029MR1319601
  13. J. J. Duistermaat, The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator, (1996), Birkhäuser, Boston Zbl0858.58045MR1365745
  14. J. J Duistermaat, G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259-268 Zbl0503.58015MR674406
  15. J. J Duistermaat, J. A. C. Kolk, Lie Groups, (2000), Universitext, Springer, Berlin Zbl0955.22001MR1738431
  16. M. Fernández, M. J. Gotay, A. Gray, Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212 Zbl0656.53034MR955011
  17. A. Giacobbe, Convexity of multi-valued momentum maps, Geometriae Dedicata 111 (2005), 1-22 Zbl1115.53059MR2155173
  18. V. L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), 625-640 Zbl0759.57023MR1175727
  19. M. Greenberg, Lectures on Algebraic Topology, (1967), W.A. Benjamin, New York, Amsterdam Zbl0169.54403MR215295
  20. V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian T n -Spaces, 122 (1994), Progress in Mathematics (Boston, Mass.), Boston, Basel, Berlin Zbl0828.58001MR1301331
  21. V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, (1996), Cambridge Univ. Press., Cambridge Zbl0870.58023MR1414677
  22. V. Guillemin, S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513 Zbl0503.58017MR664117
  23. V. Guillemin, S. Sternberg, Multiplicity-free spaces, J. Diff. Geom. 19 (1984), 31-56 Zbl0548.58017MR739781
  24. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
  25. A. Haefliger, É Salem, Actions of tori on orbifolds, Ann. Global Anal. Geom. 9 (1991), 37-59 Zbl0733.57020MR1116630
  26. T. W. Hungerford, Algebra, (1974), Springer-Verlag, New York Zbl0442.00002MR600654
  27. Y. Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Memoirs Amer. Math. Soc. 141 (1999) Zbl0982.70011MR1612833
  28. Y. Karshon, S. Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc. 353 (2001), 4831-4861 Zbl0992.53062MR1852084
  29. V. Klee, Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466 Zbl0042.36201MR44014
  30. K. Kodaira, On the structure of compact analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798 Zbl0137.17501MR187255
  31. M. Kogan, On completely integrable systems with local torus actions, Ann. Global Anal. Geom. 15 (1997), 543-553 Zbl0904.58029MR1608655
  32. J. L. Koszul, Sur certains groupes de transformations de Lie, Colloques Int. Centre Nat. Rech. Sci. 52 (1953), 137-141 Zbl0101.16201MR59919
  33. E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds, Trans. Amer. Math. Soc. 349 (1997), 4201-4230 Zbl0897.58016MR1401525
  34. N. C. Leung, M. Symington, Almost toric symplectic four-manifolds, (2003) Zbl1197.53103
  35. S. MacLane, Categories for the Working Mathematician, 5 (1971, 1998), Springer-Verlag, New York Zbl0705.18001MR1712872
  36. C. M. Marle, Classification des actions hamiltoniennes au voisinage d’une orbite, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 249-252 Zbl0588.58026
  37. J. N. Mather, Stability of C mappings: II. Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291 Zbl0177.26002MR259953
  38. D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), 149-160 Zbl0696.53023MR1029424
  39. D. McDuff, D. Salamon, Introduction to Symplectic Topology. 2nd ed., (1998), Oxford Mathematical Monographs. New York, NY: Oxford University Press Zbl0844.58029MR1698616
  40. Transformation Groups. Symplectic Torus Actions and Toric Manifolds, (2005), MukherjeeG.G., New Delhi Zbl1109.14001MR2214284
  41. S. Nakajima, Über konvexe Kurven und Flächen., Tôhoku Math. J. 29 (1928), 227-230 
  42. S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Russ. Math. Surveys 37 (1982), 1-56 Zbl0571.58011MR676612
  43. P. Orlik, F. Raymond, Actions of the torus on 4-manifolds, I, Trans. Amer. Math. Soc. 152 (1970), 531-559 Zbl0216.20202MR268911
  44. J.-P. Ortega, T. S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (2002), 81-93 Zbl1072.53541MR1894237
  45. J.-P. Ortega, T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, 222 (2004), Birkhäuser, Boston, MA Zbl1241.53069MR2021152
  46. R. S. Palais, T. E. Stewart, Torus bundles over a torus, Proc. Amer. Math. Soc. 12 (1961), 26-29 Zbl0102.38702MR123638
  47. P. S. Pao, The topological structure of 4-manifolds with effective torus actions, I, Trans. Amer. Math. Soc. 227 (1977), 279-317 Zbl0343.57023MR431231
  48. A. Pelayo, Symplectic actions of two-tori on four-manifolds Zbl1189.53081
  49. R. T. Rockafellar, Convex Analysis, (1970), Princeton University Press, Princeton, New Jersey Zbl0193.18401MR274683
  50. M. Symington, Four dimensions from two in symplectic topology, Proc. Sympos. Pure Math. 71 (2003), 153-208, Amer. Math. Soc., Providence, RI Zbl1049.57016MR2024634
  51. W. P. Thurston, Some examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468 Zbl0324.53031MR402764
  52. H. Tietze, Über Konvixität im Kleinen und im Großen und über gewisse den Punkten einer Menge zugeordete Dimensionszahlen, Math. Z. 28 (1928), 697-707 Zbl54.0797.01MR1544985
  53. H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159-160 Zbl0063.08235MR7783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.