Strong diamagnetism for general domains and application

Soeren Fournais[1]; Bernard Helffer[2]

  • [1] Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France) and University of Aarhus Department of Mathematical Sciences Ny Munkegade, Building 1530 8000 Aarhus C (Denmark)
  • [2] Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2389-2400
  • ISSN: 0373-0956

Abstract

top
We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 ( B ) be the first eigenvalue of this Laplacian. It is proved that B λ 1 ( B ) is monotone increasing for large B . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

How to cite

top

Fournais, Soeren, and Helffer, Bernard. "Strong diamagnetism for general domains and application." Annales de l’institut Fourier 57.7 (2007): 2389-2400. <http://eudml.org/doc/10301>.

@article{Fournais2007,
abstract = {We consider the Neumann Laplacian with constant magnetic field on a regular domain in $\mathbb\{R\}^2$. Let $B$ be the strength of the magnetic field and let $\lambda _1(B)$ be the first eigenvalue of this Laplacian. It is proved that $B \mapsto \lambda _1(B)$ is monotone increasing for large $B$. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.},
affiliation = {Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France) and University of Aarhus Department of Mathematical Sciences Ny Munkegade, Building 1530 8000 Aarhus C (Denmark); Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France)},
author = {Fournais, Soeren, Helffer, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {Spectral theory; bottom of the spectrum; Neumann condition; superconductivity; spectral theory},
language = {eng},
number = {7},
pages = {2389-2400},
publisher = {Association des Annales de l’institut Fourier},
title = {Strong diamagnetism for general domains and application},
url = {http://eudml.org/doc/10301},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Fournais, Soeren
AU - Helffer, Bernard
TI - Strong diamagnetism for general domains and application
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2389
EP - 2400
AB - We consider the Neumann Laplacian with constant magnetic field on a regular domain in $\mathbb{R}^2$. Let $B$ be the strength of the magnetic field and let $\lambda _1(B)$ be the first eigenvalue of this Laplacian. It is proved that $B \mapsto \lambda _1(B)$ is monotone increasing for large $B$. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.
LA - eng
KW - Spectral theory; bottom of the spectrum; Neumann condition; superconductivity; spectral theory
UR - http://eudml.org/doc/10301
ER -

References

top
  1. Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, 29 (1982), Princeton University Press, Princeton, NJ Zbl0503.35001MR745286
  2. P. Bauman, D. Phillips, Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), 1-43 Zbl0922.35157MR1629119
  3. Andrew Bernoff, Peter Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998), 1272-1284 Zbl1056.82523MR1608449
  4. Virginie Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal 41 (2005), 215-258 Zbl1067.35054MR2127997
  5. Virginie Bonnaillie-Noël, Monique Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré 7 (2006), 899-931 Zbl1134.81021MR2254755
  6. Virginie Bonnaillie-Noël, Fournais Soeren, Superconductivity in domains with corners 
  7. László Erdős, Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys. 38 (1997), 1289-1317 Zbl0875.81047MR1435670
  8. László Erdős, Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble) 52 (2002), 1833-1874 Zbl1106.35039MR1954326
  9. S. Fournais, B. Helffer, On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys. 266 (2006), 153-196 Zbl1107.58009MR2231969
  10. T. Giorgi, D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev. 44 (2002), 237-256 (electronic) Zbl1094.82021MR1926099
  11. Bernard Helffer, Abderemane Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
  12. Bernard Helffer, Xing-Bin Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 145-181 Zbl1060.35132MR1958165
  13. Michael Loss, Bernd Thaller, Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys. 186 (1997), 95-107 Zbl0873.35078MR1462758
  14. Kening Lu, Xing-Bin Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (1999), 2647-2670 Zbl0943.35058MR1694223
  15. Kening Lu, Xing-Bin Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D 127 (1999), 73-104 Zbl0934.35174MR1678383
  16. Kening Lu, Xing-Bin Pan, Gauge invariant eigenvalue problems in R 2 and in R + 2 , Trans. Amer. Math. Soc. 352 (2000), 1247-1276 Zbl1053.35124MR1675206
  17. Xing-Bin Pan, Superconductivity near critical temperature, J. Math. Phys. 44 (2003), 2639-2678 Zbl1062.82057MR1979105
  18. Manuel del Pino, Patricio L. Felmer, Peter Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000), 413-446 Zbl0982.35077MR1776839
  19. Fournais Soeren, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble) 56 (2006), 1-67 Zbl1097.47020MR2228679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.