Strong diamagnetism for general domains and application
Soeren Fournais[1]; Bernard Helffer[2]
- [1] Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France) and University of Aarhus Department of Mathematical Sciences Ny Munkegade, Building 1530 8000 Aarhus C (Denmark)
- [2] Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2389-2400
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFournais, Soeren, and Helffer, Bernard. "Strong diamagnetism for general domains and application." Annales de l’institut Fourier 57.7 (2007): 2389-2400. <http://eudml.org/doc/10301>.
@article{Fournais2007,
abstract = {We consider the Neumann Laplacian with constant magnetic field on a regular domain in $\mathbb\{R\}^2$. Let $B$ be the strength of the magnetic field and let $\lambda _1(B)$ be the first eigenvalue of this Laplacian. It is proved that $B \mapsto \lambda _1(B)$ is monotone increasing for large $B$. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.},
affiliation = {Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France) and University of Aarhus Department of Mathematical Sciences Ny Munkegade, Building 1530 8000 Aarhus C (Denmark); Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France)},
author = {Fournais, Soeren, Helffer, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {Spectral theory; bottom of the spectrum; Neumann condition; superconductivity; spectral theory},
language = {eng},
number = {7},
pages = {2389-2400},
publisher = {Association des Annales de l’institut Fourier},
title = {Strong diamagnetism for general domains and application},
url = {http://eudml.org/doc/10301},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Fournais, Soeren
AU - Helffer, Bernard
TI - Strong diamagnetism for general domains and application
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2389
EP - 2400
AB - We consider the Neumann Laplacian with constant magnetic field on a regular domain in $\mathbb{R}^2$. Let $B$ be the strength of the magnetic field and let $\lambda _1(B)$ be the first eigenvalue of this Laplacian. It is proved that $B \mapsto \lambda _1(B)$ is monotone increasing for large $B$. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.
LA - eng
KW - Spectral theory; bottom of the spectrum; Neumann condition; superconductivity; spectral theory
UR - http://eudml.org/doc/10301
ER -
References
top- Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of -body Schrödinger operators, 29 (1982), Princeton University Press, Princeton, NJ Zbl0503.35001MR745286
- P. Bauman, D. Phillips, Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), 1-43 Zbl0922.35157MR1629119
- Andrew Bernoff, Peter Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998), 1272-1284 Zbl1056.82523MR1608449
- Virginie Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal 41 (2005), 215-258 Zbl1067.35054MR2127997
- Virginie Bonnaillie-Noël, Monique Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré 7 (2006), 899-931 Zbl1134.81021MR2254755
- Virginie Bonnaillie-Noël, Fournais Soeren, Superconductivity in domains with corners
- László Erdős, Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys. 38 (1997), 1289-1317 Zbl0875.81047MR1435670
- László Erdős, Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble) 52 (2002), 1833-1874 Zbl1106.35039MR1954326
- S. Fournais, B. Helffer, On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys. 266 (2006), 153-196 Zbl1107.58009MR2231969
- T. Giorgi, D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev. 44 (2002), 237-256 (electronic) Zbl1094.82021MR1926099
- Bernard Helffer, Abderemane Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
- Bernard Helffer, Xing-Bin Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 145-181 Zbl1060.35132MR1958165
- Michael Loss, Bernd Thaller, Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys. 186 (1997), 95-107 Zbl0873.35078MR1462758
- Kening Lu, Xing-Bin Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (1999), 2647-2670 Zbl0943.35058MR1694223
- Kening Lu, Xing-Bin Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D 127 (1999), 73-104 Zbl0934.35174MR1678383
- Kening Lu, Xing-Bin Pan, Gauge invariant eigenvalue problems in and in , Trans. Amer. Math. Soc. 352 (2000), 1247-1276 Zbl1053.35124MR1675206
- Xing-Bin Pan, Superconductivity near critical temperature, J. Math. Phys. 44 (2003), 2639-2678 Zbl1062.82057MR1979105
- Manuel del Pino, Patricio L. Felmer, Peter Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000), 413-446 Zbl0982.35077MR1776839
- Fournais Soeren, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble) 56 (2006), 1-67 Zbl1097.47020MR2228679
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.