Upper critical field and location of surface nucleation of superconductivity

Bernard Helffer; Xing-Bin Pan

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 145-181
  • ISSN: 0294-1449

How to cite

top

Helffer, Bernard, and Pan, Xing-Bin. "Upper critical field and location of surface nucleation of superconductivity." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 145-181. <http://eudml.org/doc/78571>.

@article{Helffer2003,
author = {Helffer, Bernard, Pan, Xing-Bin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical field; location of the superconductivity; magnetic vector potential; Euler-Lagrange equations; minimizers},
language = {eng},
number = {1},
pages = {145-181},
publisher = {Elsevier},
title = {Upper critical field and location of surface nucleation of superconductivity},
url = {http://eudml.org/doc/78571},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Helffer, Bernard
AU - Pan, Xing-Bin
TI - Upper critical field and location of surface nucleation of superconductivity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 145
EP - 181
LA - eng
KW - critical field; location of the superconductivity; magnetic vector potential; Euler-Lagrange equations; minimizers
UR - http://eudml.org/doc/78571
ER -

References

top
  1. [1] Agmon S., Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operators, Princeton University Press, 1982. Zbl0503.35001MR745286
  2. [2] Bauman P., Phillips D., Tang Q., Stable nucleation for the Ginzburg–Landau system with an applied magnetic field, Arch. Rational Mech. Anal.142 (1998) 1-43. Zbl0922.35157MR1629119
  3. [3] Bernoff A., Sternberg P., Onset of superconductivity in decreasing fields for general domains, J. Math. Phys.38 (1998) 1272-1284. Zbl1056.82523MR1608449
  4. [4] Bolley C., Helffer B., An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. Henri Poincaré, Physique Théorique58 (1993) 189-233. Zbl0779.35104MR1217119
  5. [5] Chapman S.J., Nucleation of superconductivity in decreasing fields, European J. Appl. Math.5 (1994), part 1, 449–468; part 2, 469–494. Zbl0820.35124MR1309734
  6. [6] Chapman S.J., Howison S.D., Ockendon J.R., Macroscopic models for superconductivity, SIAM Rev.34 (1992) 529-560. Zbl0769.73068MR1193011
  7. [7] Dauge M., Helffer B., Eigenvalues variation, I, Neumann problem for Sturm–Liouville operators, J. Differential Equations104 (1993) 243-262. Zbl0784.34021MR1231468
  8. [8] De Gennes P.G., Superconductivity of Metals and Alloys, Benjamin, New York, 1966. Zbl0138.22801
  9. [9] del Pino M., Felmer P., Sternberg P., Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys.210 (2000) 413-446. Zbl0982.35077MR1776839
  10. [10] Du Q., Gunzburger M., Peterson J., Analysis and approximation of the Ginzburg–Landau model of superconductivity, SIAM Rev.34 (1992) 45-81. Zbl0787.65091MR1156289
  11. [11] Ginzburg V., Landau L., On the theory of superconductivity, Soviet Phys. JETP20 (1950) 1064-1082. 
  12. [12] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal.30 (1999) 341-359. Zbl0920.35058MR1664763
  13. [13] Helffer B., Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, 1988. Zbl0647.35002MR960278
  14. [14] Helffer B., Mohamed A., Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal.138 (1996) 40-81. Zbl0851.58046MR1391630
  15. [15] Helffer B., Morame A., Magnetic bottles in connection with superconductivity, J. Funct. Anal.185 (2001) 604-680. Zbl1078.81023MR1856278
  16. [16] Lu K., Pan X.-B., The first eigenvalue of Ginzburg–Landau operator, in: Bates, (Eds.), Differential Equations and Applications, International Press, 1997, pp. 215-226. Zbl0935.35108MR1602638
  17. [17] Lu K., Pan X.-B., Gauge invariant eigenvalue problems in R2 and in R2+, Trans. Amer. Math. Soc.352 (2000) 1247-1276. Zbl1053.35124MR1675206
  18. [18] Lu K., Pan X.-B., Eigenvalue problems of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (1999) 2647-2670. Zbl0943.35058MR1694223
  19. [19] Lu K., Pan X.-B., Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity, Phys. D127 (1999) 73-104. Zbl0934.35174MR1678383
  20. [20] Lu K., Pan X.-B., Surface nucleation of superconductivity in 3-dimension, J. Differential Equations168 (2000) 386-452. Zbl0972.35152MR1808455
  21. [21] Lu K., Pan X.-B., Surface nucleation of superconductivity, Methods and Applications of Analysis8 (2001) 279-300. Zbl1016.35066MR1904530
  22. [22] Saint-James D., De Gennes P., Onset of superconductivity in decreasing fields, Phys. Lett.6 (5) (1963) 306-308. 
  23. [23] Saint-James D., Sarma G., Thomas E.J., Type II Superconductivity, Pergamon Press, Oxford, 1969. 
  24. [24] Tinkham M., Introduction to Superconductivity, McGraw-Hill, New York, 1975. 

Citations in EuDML Documents

top
  1. Bernard Helffer, Abderemane Morame, Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)
  2. Soeren Fournais, Bernard Helffer, Strong diamagnetism for general domains and application
  3. Søren Fournais, Le troisième champ critique en théorie de Ginzburg-Landau
  4. Søren Fournais, Sur le Laplacien magnétique avec condition de Neumann.
  5. Soeren Fournais, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

NotesEmbed ?

top

You must be logged in to post comments.