Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions
László Erdős[1]
- [1] Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1833-1874
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topErdős, László. "Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions." Annales de l’institut Fourier 52.6 (2002): 1833-1874. <http://eudml.org/doc/116029>.
@article{Erdős2002,
abstract = {We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle
over a compact Riemann surface $M$ is bounded by the $L^1$-norm of the magnetic field
$B$. This implies a similar bound on the multiplicity of the ground state. An example
shows that this degeneracy can indeed be comparable with $\int _M \vert B\vert $ even in
case of the trivial bundle.},
affiliation = {Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332 (USA)},
author = {Erdős, László},
journal = {Annales de l’institut Fourier},
keywords = {magnetic laplacian; multiplicity of the ground state; Riemann surface; magnetic Laplacian},
language = {eng},
number = {6},
pages = {1833-1874},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions},
url = {http://eudml.org/doc/116029},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Erdős, László
TI - Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1833
EP - 1874
AB - We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle
over a compact Riemann surface $M$ is bounded by the $L^1$-norm of the magnetic field
$B$. This implies a similar bound on the multiplicity of the ground state. An example
shows that this degeneracy can indeed be comparable with $\int _M \vert B\vert $ even in
case of the trivial bundle.
LA - eng
KW - magnetic laplacian; multiplicity of the ground state; Riemann surface; magnetic Laplacian
UR - http://eudml.org/doc/116029
ER -
References
top- T. Aubin, Some Nonlinear Problems in Riemannian Geometry, (1998), Springer-Verlag Zbl0896.53003MR1636569
- Y. Aharonov, A. Casher, Ground state of spin charged particle in a two-dimensional magnetic field., Phys. Rev. A19 (1979), 2461-2462 MR535300
- G. Besson, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier 30 (1980), 109-128 Zbl0417.30033MR576075
- G. Besson, B. Colbois, G. Courtois, Sur la multiplicité de la première valeur propre de l’opérateur de Schrödinger avec champ magnétique sur la sphère , Trans. Amer. Math. Soc. 350 (1998), 331-345 Zbl0903.58060MR1390969
- Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non nulle du laplacien, Comment. Math. Helv. 61 (1986), 254-270 Zbl0607.53028MR856089
- Y. Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. Éc. Norm. Sup., 4e série 20 (1987), 599-615 Zbl0636.58036MR932800
- Y. Colin de Verdière, Sur une hypothèse de transversalité d'Arnold, Comment. Math. Helv. 63 (1988), 184-193 Zbl0672.58046MR948776
- Y. Colin de Verdière, Spectre d'opérateurs différentiels sur les graphes Zbl0947.05080
- Y. Colin de Verdière, N. Torki, Opérateurs Schrödinger avec champs magnétique, Séminaire de théorie spectrale et géométrie (Grenoble) 11 (1992-1993), 9-18 Zbl0937.35510MR1715941
- S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55 Zbl0334.35022MR397805
- H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, (1987), Springer-Verlag Zbl0619.47005MR883643
- I. Chavel, Riemannian Geometry: A Modern Introduction, (1993), Cambridge University Press Zbl0810.53001MR1271141
- S.Y. Cheng, P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981), 327-338 Zbl0484.53034MR639355
- L. Erdős, J.P. Solovej, The kernel of the Dirac operator, Rev. Math. Phys. 13 (2001), 1247-1280 Zbl1064.58027MR1860416
- L. Erdős, V. Vougalter, Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields, Commun. Math. Phys. 225 (2002), 399-421 Zbl0994.81036MR1889230
- R. Hempel, I. Herbst, Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Commun. Math. Phys. 169 (1995), 237-259 Zbl0827.35031MR1329195
- B. Hellfer, A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
- M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), 43-48 Zbl0923.35109MR1674331
- T. Hupfer, H. Leschke, P. Müller, S. Warzel, The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Comm. Math. Phys. 221 (2001), 229-254 Zbl1002.82015MR1845322
- J. Jost, Riemannian Geometry and Geometric Analysis, (1998), Springer-Verlag Zbl0828.53002MR1625976
- A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, Operator Theory: Advances and Applications 108 (1999), 299-305 Zbl0977.26005MR1708811
- S. Rosenberg, Semigroup domination and vanishing theorems., Geometry of random motion (Ithaca, N.Y. 1987) 73 (1988), 287-302 Zbl0657.53022
- B. Simon, Maximal and minimal Schrödinger forms, J. Operator Theory. 1 (1979), 37-47 Zbl0446.35035MR526289
- Stein E., Harmonic Analysis, (1993), Princeton University Press Zbl0821.42001MR1232192
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.