Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions
László Erdős[1]
- [1] Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1833-1874
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- T. Aubin, Some Nonlinear Problems in Riemannian Geometry, (1998), Springer-Verlag Zbl0896.53003MR1636569
- Y. Aharonov, A. Casher, Ground state of spin charged particle in a two-dimensional magnetic field., Phys. Rev. A19 (1979), 2461-2462 MR535300
- G. Besson, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier 30 (1980), 109-128 Zbl0417.30033MR576075
- G. Besson, B. Colbois, G. Courtois, Sur la multiplicité de la première valeur propre de l’opérateur de Schrödinger avec champ magnétique sur la sphère , Trans. Amer. Math. Soc. 350 (1998), 331-345 Zbl0903.58060MR1390969
- Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non nulle du laplacien, Comment. Math. Helv. 61 (1986), 254-270 Zbl0607.53028MR856089
- Y. Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. Éc. Norm. Sup., 4e série 20 (1987), 599-615 Zbl0636.58036MR932800
- Y. Colin de Verdière, Sur une hypothèse de transversalité d'Arnold, Comment. Math. Helv. 63 (1988), 184-193 Zbl0672.58046MR948776
- Y. Colin de Verdière, Spectre d'opérateurs différentiels sur les graphes Zbl0947.05080
- Y. Colin de Verdière, N. Torki, Opérateurs Schrödinger avec champs magnétique, Séminaire de théorie spectrale et géométrie (Grenoble) 11 (1992-1993), 9-18 Zbl0937.35510MR1715941
- S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55 Zbl0334.35022MR397805
- H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, (1987), Springer-Verlag Zbl0619.47005MR883643
- I. Chavel, Riemannian Geometry: A Modern Introduction, (1993), Cambridge University Press Zbl0810.53001MR1271141
- S.Y. Cheng, P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981), 327-338 Zbl0484.53034MR639355
- L. Erdős, J.P. Solovej, The kernel of the Dirac operator, Rev. Math. Phys. 13 (2001), 1247-1280 Zbl1064.58027MR1860416
- L. Erdős, V. Vougalter, Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields, Commun. Math. Phys. 225 (2002), 399-421 Zbl0994.81036MR1889230
- R. Hempel, I. Herbst, Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Commun. Math. Phys. 169 (1995), 237-259 Zbl0827.35031MR1329195
- B. Hellfer, A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
- M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), 43-48 Zbl0923.35109MR1674331
- T. Hupfer, H. Leschke, P. Müller, S. Warzel, The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Comm. Math. Phys. 221 (2001), 229-254 Zbl1002.82015MR1845322
- J. Jost, Riemannian Geometry and Geometric Analysis, (1998), Springer-Verlag Zbl0828.53002MR1625976
- A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, Operator Theory: Advances and Applications 108 (1999), 299-305 Zbl0977.26005MR1708811
- S. Rosenberg, Semigroup domination and vanishing theorems., Geometry of random motion (Ithaca, N.Y. 1987) 73 (1988), 287-302 Zbl0657.53022
- B. Simon, Maximal and minimal Schrödinger forms, J. Operator Theory. 1 (1979), 37-47 Zbl0446.35035MR526289
- Stein E., Harmonic Analysis, (1993), Princeton University Press Zbl0821.42001MR1232192