Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions

László Erdős[1]

  • [1] Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1833-1874
  • ISSN: 0373-0956

Abstract

top
We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle over a compact Riemann surface M is bounded by the L 1 -norm of the magnetic field B . This implies a similar bound on the multiplicity of the ground state. An example shows that this degeneracy can indeed be comparable with M | B | even in case of the trivial bundle.

How to cite

top

Erdős, László. "Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions." Annales de l’institut Fourier 52.6 (2002): 1833-1874. <http://eudml.org/doc/116029>.

@article{Erdős2002,
abstract = {We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle over a compact Riemann surface $M$ is bounded by the $L^1$-norm of the magnetic field $B$. This implies a similar bound on the multiplicity of the ground state. An example shows that this degeneracy can indeed be comparable with $\int _M \vert B\vert $ even in case of the trivial bundle.},
affiliation = {Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332 (USA)},
author = {Erdős, László},
journal = {Annales de l’institut Fourier},
keywords = {magnetic laplacian; multiplicity of the ground state; Riemann surface; magnetic Laplacian},
language = {eng},
number = {6},
pages = {1833-1874},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions},
url = {http://eudml.org/doc/116029},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Erdős, László
TI - Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1833
EP - 1874
AB - We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle over a compact Riemann surface $M$ is bounded by the $L^1$-norm of the magnetic field $B$. This implies a similar bound on the multiplicity of the ground state. An example shows that this degeneracy can indeed be comparable with $\int _M \vert B\vert $ even in case of the trivial bundle.
LA - eng
KW - magnetic laplacian; multiplicity of the ground state; Riemann surface; magnetic Laplacian
UR - http://eudml.org/doc/116029
ER -

References

top
  1. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, (1998), Springer-Verlag Zbl0896.53003MR1636569
  2. Y. Aharonov, A. Casher, Ground state of spin - 1 2 charged particle in a two-dimensional magnetic field., Phys. Rev. A19 (1979), 2461-2462 MR535300
  3. G. Besson, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier 30 (1980), 109-128 Zbl0417.30033MR576075
  4. G. Besson, B. Colbois, G. Courtois, Sur la multiplicité de la première valeur propre de l’opérateur de Schrödinger avec champ magnétique sur la sphère S 2 , Trans. Amer. Math. Soc. 350 (1998), 331-345 Zbl0903.58060MR1390969
  5. Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non nulle du laplacien, Comment. Math. Helv. 61 (1986), 254-270 Zbl0607.53028MR856089
  6. Y. Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. Éc. Norm. Sup., 4e série 20 (1987), 599-615 Zbl0636.58036MR932800
  7. Y. Colin de Verdière, Sur une hypothèse de transversalité d'Arnold, Comment. Math. Helv. 63 (1988), 184-193 Zbl0672.58046MR948776
  8. Y. Colin de Verdière, Spectre d'opérateurs différentiels sur les graphes Zbl0947.05080
  9. Y. Colin de Verdière, N. Torki, Opérateurs Schrödinger avec champs magnétique, Séminaire de théorie spectrale et géométrie (Grenoble) 11 (1992-1993), 9-18 Zbl0937.35510MR1715941
  10. S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55 Zbl0334.35022MR397805
  11. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, (1987), Springer-Verlag Zbl0619.47005MR883643
  12. I. Chavel, Riemannian Geometry: A Modern Introduction, (1993), Cambridge University Press Zbl0810.53001MR1271141
  13. S.Y. Cheng, P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981), 327-338 Zbl0484.53034MR639355
  14. L. Erdős, J.P. Solovej, The kernel of the Dirac operator, Rev. Math. Phys. 13 (2001), 1247-1280 Zbl1064.58027MR1860416
  15. L. Erdős, V. Vougalter, Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields, Commun. Math. Phys. 225 (2002), 399-421 Zbl0994.81036MR1889230
  16. R. Hempel, I. Herbst, Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Commun. Math. Phys. 169 (1995), 237-259 Zbl0827.35031MR1329195
  17. B. Hellfer, A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
  18. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), 43-48 Zbl0923.35109MR1674331
  19. T. Hupfer, H. Leschke, P. Müller, S. Warzel, The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Comm. Math. Phys. 221 (2001), 229-254 Zbl1002.82015MR1845322
  20. J. Jost, Riemannian Geometry and Geometric Analysis, (1998), Springer-Verlag Zbl0828.53002MR1625976
  21. A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, Operator Theory: Advances and Applications 108 (1999), 299-305 Zbl0977.26005MR1708811
  22. S. Rosenberg, Semigroup domination and vanishing theorems., Geometry of random motion (Ithaca, N.Y. 1987) 73 (1988), 287-302 Zbl0657.53022
  23. B. Simon, Maximal and minimal Schrödinger forms, J. Operator Theory. 1 (1979), 37-47 Zbl0446.35035MR526289
  24. Stein E., Harmonic Analysis, (1993), Princeton University Press Zbl0821.42001MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.