Integrable hierarchies and the modular class

Pantelis A. Damianou[1]; Rui Loja Fernandes[2]

  • [1] University of Cyprus Department of Mathematics and Statistics P.O. Box 20537, 1678 Nicosia (Cyprus)
  • [2] Instituto Superior Técnico Departamento de Matemática Lisboa (Portugal)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 107-137
  • ISSN: 0373-0956

Abstract

top
It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an integrable hierarchy of flows. This vector field is the modular class of the Poisson-Nijhenhuis manifold. This class has a canonical representative which, under a cohomological assumption, is a bi-hamiltonian vector field. In many examples the associated hierarchy of flows reproduces classical integrable hierarchies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.

How to cite

top

Damianou, Pantelis A., and Fernandes, Rui Loja. "Integrable hierarchies and the modular class." Annales de l’institut Fourier 58.1 (2008): 107-137. <http://eudml.org/doc/10306>.

@article{Damianou2008,
abstract = {It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an integrable hierarchy of flows. This vector field is the modular class of the Poisson-Nijhenhuis manifold. This class has a canonical representative which, under a cohomological assumption, is a bi-hamiltonian vector field. In many examples the associated hierarchy of flows reproduces classical integrable hierarchies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.},
affiliation = {University of Cyprus Department of Mathematics and Statistics P.O. Box 20537, 1678 Nicosia (Cyprus); Instituto Superior Técnico Departamento de Matemática Lisboa (Portugal)},
author = {Damianou, Pantelis A., Fernandes, Rui Loja},
journal = {Annales de l’institut Fourier},
keywords = {Poisson-Nijhenhuis manifolds; modular class; integrable hierarchies},
language = {eng},
number = {1},
pages = {107-137},
publisher = {Association des Annales de l’institut Fourier},
title = {Integrable hierarchies and the modular class},
url = {http://eudml.org/doc/10306},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Damianou, Pantelis A.
AU - Fernandes, Rui Loja
TI - Integrable hierarchies and the modular class
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 107
EP - 137
AB - It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an integrable hierarchy of flows. This vector field is the modular class of the Poisson-Nijhenhuis manifold. This class has a canonical representative which, under a cohomological assumption, is a bi-hamiltonian vector field. In many examples the associated hierarchy of flows reproduces classical integrable hierarchies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.
LA - eng
KW - Poisson-Nijhenhuis manifolds; modular class; integrable hierarchies
UR - http://eudml.org/doc/10306
ER -

References

top
  1. M. Agrotis, P. A. Damianou, The modular hierarchy of the Toda lattice Zbl1146.53053
  2. A. V. Bolsinov, A. V. Borisov, Compatible Poisson brackets on Lie algebras, Matem notes 72 (2002), 10-30 Zbl1042.37041MR1942578
  3. A. V. Bolsinov, V. S. Matveev, Geometrical interpretation of Beneti systems, J. of Geom. and Phys. 44 (2003), 489-506 Zbl1010.37035MR1943174
  4. P. Casati, G. Falqui, F. Magri, M. Pedroni, Eight Lectures on Integrable Systems, Integrability of Nonlinear Systems 495 (1997), 209-250, Springer-Verlag, Berlin Zbl0907.58031
  5. R. Caseiro, Master integrals, superintegrability and quadratic algebras, Bull. Sci. Math. 126 (2002), 617-630 Zbl1010.37033MR1944388
  6. R. Caseiro, J. P. Françoise, Algebraically linearizable dynamical systems, Textos Mat. Ser. B 32 (2002), 35-45, Coimbra Zbl1057.35069MR1969433
  7. P. A. Damianou, Multiple hamiltonian structure of Bogoyavlensky-Toda lattices, Rev. Math. Phys. 16 (2004), 175-241 Zbl1053.37061MR2048317
  8. P. A. Damianou, On the bi-hamiltonian structure of Bogoyavlensky-Toda lattices, Nonlinearity 17 (2004), 397-413 Zbl1052.37045MR2039049
  9. J. P. Dufour, A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), 137-140 Zbl0719.58001MR1086519
  10. J. P. Dufour, N. T. Zung, Poisson structures and their normal forms, Progress in Mathematics (2005) Zbl1082.53078
  11. S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford 50 (1999), 417-436 Zbl0968.58014MR1726784
  12. L. Faybusovich, M. Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), 236-244 Zbl1115.37336MR1774784
  13. R. L. Fernandes, On the mastersymmetries and bi-hamiltonian structure of the Toda lattice, J. Phys. A 26 (1993), 3797-3803 Zbl0811.58035MR1239362
  14. R. L. Fernandes, Connections in Poisson Geometry I: Holonomy and Invariants, J. Diff. Geom. 54 (2000), 303-366 Zbl1036.53060MR1818181
  15. R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179 Zbl1007.22007MR1929305
  16. H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B 9 (1974), 1924-1925 Zbl0942.37504MR408647
  17. J. Grabowski, G. Marmo, P. Michor, Homology and modular classes of Lie algebroids, Ann. Inst. Fourier 56 (2006), 69-83 Zbl1141.17018MR2228680
  18. J. Grabowski, G. Marmo, A. M. Perelomov, Poisson structures towards a classification, Modern Phys. Lett. A 8 (1993), 1719-1733 Zbl1020.37529MR1229646
  19. Y. Kosmann-Schwarzbach, Géométrie des systèmes bihamiltoniens, Systèmes dynamiques non linéaires: intégrabilité et comportement qualitatif 102 (1986), 185-216, WinternitzP.P. Zbl0624.58009
  20. Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré 53 (1990), 35-81 Zbl0707.58048MR1077465
  21. Y. Kosmann-Schwarzbach, A. Weinstein, Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris 341 (2005), 509-514 Zbl1080.22001MR2180819
  22. J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque Numéro Hors Série (1985), 257-271 Zbl0615.58029MR837203
  23. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom. 12 (1977), 253-300 Zbl0405.53024MR501133
  24. Z. Liu, P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42 Zbl0773.58007MR1193624
  25. J. Nunes da Costa, P. A. Damianou, Toda systems and exponents of simple Lie groups, Bull. Sci. Math. 125 (2001), 49-69 Zbl1017.37028MR1812814
  26. W Oevel, A geometrical approach to integrable systems admitting time dependent invariants, Topics in Soliton Theory and Exactly Solvable non-linear Equations (1987), 108-124, World Scientific Publ., Singapore Zbl0736.35119MR900389
  27. M. F. Ranada, Superintegrability of the Calogero-Moser system: constants of motion, master symmetries, and time-dependent symmetries, J. Math. Phys. 40 (1999), 236-247 Zbl0956.37041MR1658033
  28. I. Vaisman, Lectures on the geometry of Poisson manifolds, 118 (1994), Progress in Mathematics, Basel Zbl0810.53019MR1269545
  29. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.