Integrable hierarchies and the modular class
Pantelis A. Damianou[1]; Rui Loja Fernandes[2]
- [1] University of Cyprus Department of Mathematics and Statistics P.O. Box 20537, 1678 Nicosia (Cyprus)
- [2] Instituto Superior Técnico Departamento de Matemática Lisboa (Portugal)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 1, page 107-137
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDamianou, Pantelis A., and Fernandes, Rui Loja. "Integrable hierarchies and the modular class." Annales de l’institut Fourier 58.1 (2008): 107-137. <http://eudml.org/doc/10306>.
@article{Damianou2008,
abstract = {It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an integrable hierarchy of flows. This vector field is the modular class of the Poisson-Nijhenhuis manifold. This class has a canonical representative which, under a cohomological assumption, is a bi-hamiltonian vector field. In many examples the associated hierarchy of flows reproduces classical integrable hierarchies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.},
affiliation = {University of Cyprus Department of Mathematics and Statistics P.O. Box 20537, 1678 Nicosia (Cyprus); Instituto Superior Técnico Departamento de Matemática Lisboa (Portugal)},
author = {Damianou, Pantelis A., Fernandes, Rui Loja},
journal = {Annales de l’institut Fourier},
keywords = {Poisson-Nijhenhuis manifolds; modular class; integrable hierarchies},
language = {eng},
number = {1},
pages = {107-137},
publisher = {Association des Annales de l’institut Fourier},
title = {Integrable hierarchies and the modular class},
url = {http://eudml.org/doc/10306},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Damianou, Pantelis A.
AU - Fernandes, Rui Loja
TI - Integrable hierarchies and the modular class
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 107
EP - 137
AB - It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an integrable hierarchy of flows. This vector field is the modular class of the Poisson-Nijhenhuis manifold. This class has a canonical representative which, under a cohomological assumption, is a bi-hamiltonian vector field. In many examples the associated hierarchy of flows reproduces classical integrable hierarchies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.
LA - eng
KW - Poisson-Nijhenhuis manifolds; modular class; integrable hierarchies
UR - http://eudml.org/doc/10306
ER -
References
top- M. Agrotis, P. A. Damianou, The modular hierarchy of the Toda lattice Zbl1146.53053
- A. V. Bolsinov, A. V. Borisov, Compatible Poisson brackets on Lie algebras, Matem notes 72 (2002), 10-30 Zbl1042.37041MR1942578
- A. V. Bolsinov, V. S. Matveev, Geometrical interpretation of Beneti systems, J. of Geom. and Phys. 44 (2003), 489-506 Zbl1010.37035MR1943174
- P. Casati, G. Falqui, F. Magri, M. Pedroni, Eight Lectures on Integrable Systems, Integrability of Nonlinear Systems 495 (1997), 209-250, Springer-Verlag, Berlin Zbl0907.58031
- R. Caseiro, Master integrals, superintegrability and quadratic algebras, Bull. Sci. Math. 126 (2002), 617-630 Zbl1010.37033MR1944388
- R. Caseiro, J. P. Françoise, Algebraically linearizable dynamical systems, Textos Mat. Ser. B 32 (2002), 35-45, Coimbra Zbl1057.35069MR1969433
- P. A. Damianou, Multiple hamiltonian structure of Bogoyavlensky-Toda lattices, Rev. Math. Phys. 16 (2004), 175-241 Zbl1053.37061MR2048317
- P. A. Damianou, On the bi-hamiltonian structure of Bogoyavlensky-Toda lattices, Nonlinearity 17 (2004), 397-413 Zbl1052.37045MR2039049
- J. P. Dufour, A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), 137-140 Zbl0719.58001MR1086519
- J. P. Dufour, N. T. Zung, Poisson structures and their normal forms, Progress in Mathematics (2005) Zbl1082.53078
- S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford 50 (1999), 417-436 Zbl0968.58014MR1726784
- L. Faybusovich, M. Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), 236-244 Zbl1115.37336MR1774784
- R. L. Fernandes, On the mastersymmetries and bi-hamiltonian structure of the Toda lattice, J. Phys. A 26 (1993), 3797-3803 Zbl0811.58035MR1239362
- R. L. Fernandes, Connections in Poisson Geometry I: Holonomy and Invariants, J. Diff. Geom. 54 (2000), 303-366 Zbl1036.53060MR1818181
- R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179 Zbl1007.22007MR1929305
- H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B 9 (1974), 1924-1925 Zbl0942.37504MR408647
- J. Grabowski, G. Marmo, P. Michor, Homology and modular classes of Lie algebroids, Ann. Inst. Fourier 56 (2006), 69-83 Zbl1141.17018MR2228680
- J. Grabowski, G. Marmo, A. M. Perelomov, Poisson structures towards a classification, Modern Phys. Lett. A 8 (1993), 1719-1733 Zbl1020.37529MR1229646
- Y. Kosmann-Schwarzbach, Géométrie des systèmes bihamiltoniens, Systèmes dynamiques non linéaires: intégrabilité et comportement qualitatif 102 (1986), 185-216, WinternitzP.P. Zbl0624.58009
- Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré 53 (1990), 35-81 Zbl0707.58048MR1077465
- Y. Kosmann-Schwarzbach, A. Weinstein, Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris 341 (2005), 509-514 Zbl1080.22001MR2180819
- J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque Numéro Hors Série (1985), 257-271 Zbl0615.58029MR837203
- A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom. 12 (1977), 253-300 Zbl0405.53024MR501133
- Z. Liu, P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42 Zbl0773.58007MR1193624
- J. Nunes da Costa, P. A. Damianou, Toda systems and exponents of simple Lie groups, Bull. Sci. Math. 125 (2001), 49-69 Zbl1017.37028MR1812814
- W Oevel, A geometrical approach to integrable systems admitting time dependent invariants, Topics in Soliton Theory and Exactly Solvable non-linear Equations (1987), 108-124, World Scientific Publ., Singapore Zbl0736.35119MR900389
- M. F. Ranada, Superintegrability of the Calogero-Moser system: constants of motion, master symmetries, and time-dependent symmetries, J. Math. Phys. 40 (1999), 236-247 Zbl0956.37041MR1658033
- I. Vaisman, Lectures on the geometry of Poisson manifolds, 118 (1994), Progress in Mathematics, Basel Zbl0810.53019MR1269545
- A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394 Zbl0902.58013MR1484598
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.