-fixed distribution vectors of induced representations, for a reductive symmetric space
Philippe Blanc[1]; Patrick Delorme
- [1] Université de la Méditerranée Institut de Mathématiques de Luminy UMR 6206 CNRS 163 Avenue de Luminy Case 907 13288 Marseille Cedex 09 (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 1, page 213-261
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive -adic groups. I, Annales Scientifiques de l’École Normale Supérieure (1977), 441-472 Zbl0412.22015
- P. Blanc, Projectifs dans la catégorie des G-modules topologiques, C.R.Acad.Sc.Paris (1979), 161-163 Zbl0442.18007MR552201
- P. Blanc, J-L Brylinski, Cyclic homology and the Selberg principle, J. Funct. Anal. (1992), 289-330 Zbl0783.55004MR1186324
- A. Borel, J. Tits, Groupes réductifs, Publications Mathématiques de l’IHES (1965), 55-151 Zbl0145.17402
- A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 67 (2000), American Mathematical Society, Providence, RI Zbl0980.22015MR1721403
- J.L. Brylinski, P. Delorme, Vecteurs distributions -invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math. (1992), 619-664 Zbl0785.22014
- J. Carmona, P. Delorme, Base méromorphe de vecteurs distributions -invariants pour les séries principales généralisées d’espaces symétriques réductifs : équation fonctionnelle, J. Funct. Anal. (1994), 152-221 Zbl0831.22004
- H. Cartan, S. Eilenberg, Homological algebra, (1956), Princeton Univ. Press Zbl0075.24305MR77480
- W. Casselman, A new nonunitarity argument for -adic representations, J. Fac. Sci. Univ. Tokyo (1982), 907-928 Zbl0519.22011MR656064
- P. Delorme, Harmonic analysis on real reductive symmetric spaces, Proceedings of the International Congress of Mathematicians II (2002), 545-554 Zbl1018.43009MR1957064
- A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, (1980), CEDIC, Paris Zbl0464.22001MR644979
- A. G. Helminck, G. F. Helminck, A class of parabolic -subgroups associated with symmetric -varieties, Trans. Amer. Math. Soc. (1998), 4669-4691 Zbl0912.20041
- A. G. Helminck, S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. (1993), 26-96 Zbl0788.22022MR1215304
- Y. Hironaka, Spherical functions and local densities on Hermitian forms, J. Math Soc. Japan (1999), 553-581 Zbl0936.11024MR1691493
- Y. Hironaka, F. Sato, Spherical functions and local densities of alternating forms, Am. J. Math. (1988), 473-512 Zbl0662.22013MR944325
- J.E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York-Heidelberg Zbl0325.20039MR396773
- J.E. Humphreys, Introduction to Lie algebras and representation theory, (1978), Springer-Verlag, New York-Berlin Zbl0447.17001MR499562
- E. Michael, Selected selection theorems, Amer. Math. Monthly (1956), 223-238 Zbl0070.39502MR1529282
- O. Offen, Relative spherical functions on -adic symmetric spaces (three cases), Pacific J. Math. (2004), 97-149 Zbl1059.22019MR2060496
- O. Offen, E. Sayag, On unitary distinguished representations of distinguished by the symplectic group Zbl1147.11028
- G. Olafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math. (1987), 605-629 Zbl0665.43004MR914851
- R.W. Richardson, Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math. (1982), 287-312 Zbl0508.20021MR656625
- J.-L. Waldspurger, La formule de Plancherel pour les groupes -adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu (2003), 235-333 Zbl1029.22016