Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces

François Fillastre[1]

  • [1] Université de Neuchâtel Institut de Mathématiques rue Emile-Argand 11, cp 158 2009 Neuchâtel (Switzerland) et Université Paul Sabatier Laboratoire Emile Picard 118 route de Narbonne 31062 Toulouse Cedex 4 (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 163-195
  • ISSN: 0373-0956

Abstract

top
A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.

How to cite

top

Fillastre, François. "Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces." Annales de l’institut Fourier 57.1 (2007): 163-195. <http://eudml.org/doc/10217>.

@article{Fillastre2007,
abstract = {A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.},
affiliation = {Université de Neuchâtel Institut de Mathématiques rue Emile-Argand 11, cp 158 2009 Neuchâtel (Switzerland) et Université Paul Sabatier Laboratoire Emile Picard 118 route de Narbonne 31062 Toulouse Cedex 4 (France)},
author = {Fillastre, François},
journal = {Annales de l’institut Fourier},
keywords = {Fuchsian; convex; polyhedron; hyperbolic; conical singularities; infinitesimal rigidity; Pogorelov map; Alexandrov; infinitesimal},
language = {eng},
number = {1},
pages = {163-195},
publisher = {Association des Annales de l’institut Fourier},
title = {Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces},
url = {http://eudml.org/doc/10217},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Fillastre, François
TI - Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 163
EP - 195
AB - A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.
LA - eng
KW - Fuchsian; convex; polyhedron; hyperbolic; conical singularities; infinitesimal rigidity; Pogorelov map; Alexandrov; infinitesimal
UR - http://eudml.org/doc/10217
ER -

References

top
  1. A. D. Alexandrov, Convex polyhedra, (2005), Springer-Verlag, Berlin Zbl1067.52011MR2127379
  2. Marcel Berger, Géométrie. Vol. 5, (1977), CEDIC, Paris Zbl0423.51003MR536874
  3. Herbert Busemann, Convex surfaces, (1958), Interscience Publishers, Inc., New York Zbl0196.55101MR105155
  4. Peter Buser, Geometry and spectra of compact Riemann surfaces, 106 (1992), Birkhäuser Boston Inc., Boston, MA Zbl0770.53001MR1183224
  5. François Fillastre, Polyhedral realisation of metrics with conical singularities on compact surfaces in Lorentzian space-forms Zbl1123.53033
  6. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine, Riemannian geometry, (1990), Springer-Verlag, Berlin Zbl0716.53001MR1083149
  7. Mikhael Gromov, Partial differential relations, 9 (1986), Springer-Verlag, Berlin Zbl0651.53001MR864505
  8. C. Indermitte, Th. M. Liebling, M. Troyanov, H. Clémençon, Voronoi diagrams on piecewise flat surfaces and an application to biological growth, Theoret. Comput. Sci. 263 (2001), 263-274 Zbl0974.68222MR1846934
  9. François Labourie, Métriques prescrites sur le bord des variétés hyperboliques de dimension 3 , J. Differential Geom. 35 (1992), 609-626 Zbl0768.53017MR1163450
  10. François Labourie, Jean-Marc Schlenker, Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante, Math. Ann. 316 (2000), 465-483 Zbl0968.53047MR1752780
  11. Robert C. McOwen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 (1988), 222-224 Zbl0657.30033MR938672
  12. Subhashis Nag, The complex analytic theory of Teichmüller spaces, (1988), John Wiley & Sons Inc., New York Zbl0667.30040MR927291
  13. Barrett O’Neill, Semi-Riemannian geometry, 103 (1983), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0531.53051MR719023
  14. A. V. Pogorelov, Extrinsic geometry of convex surfaces, (1973), American Mathematical Society, Providence, R.I. Zbl0311.53067MR346714
  15. Igor Rivin, Extra-large metrics Zbl0995.05072
  16. Igor Rivin, On geometry of convex polyhedra in hyperbolic 3-space, (June 1986) Zbl0784.52014
  17. Igor Rivin, Craig D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3 -space, Invent. Math. 111 (1993), 77-111 Zbl0784.52013MR1193599
  18. Mathias Rousset, Sur la rigidité de polyèdres hyperboliques en dimension 3: cas de volume fini, cas hyperidéal cas fuchsien, Bull. Soc. Math. France 132 (2004), 233-261 Zbl1061.52007MR2075567
  19. I. Kh. Sabitov, Around the proof of the Legendre-Cauchy lemma on convex polygons, Sibirsk. Mat. Zh. 45 (2004), 892-919 Zbl1051.52015MR2091654
  20. Jean-Marc Schlenker, Hyperbolic manifolds with polyhedral boundary Zbl1091.53019
  21. Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), 109-169 Zbl1091.53019MR2208419
  22. Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, (1979), Publish or Perish Inc., Wilmington, Del. Zbl0439.53005MR394453
  23. William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift 1 (1998), 511-549 (electronic), Geom. Topol. Publ., Coventry Zbl0931.57010MR1668340
  24. Marc Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793-821 Zbl0724.53023MR1005085
  25. Heiner Zieschang, Elmar Vogt, Hans-Dieter Coldewey, Surfaces and planar discontinuous groups, 835 (1980), Springer, Berlin Zbl0438.57001MR606743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.