Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces
- [1] Université de Neuchâtel Institut de Mathématiques rue Emile-Argand 11, cp 158 2009 Neuchâtel (Switzerland) et Université Paul Sabatier Laboratoire Emile Picard 118 route de Narbonne 31062 Toulouse Cedex 4 (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 1, page 163-195
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFillastre, François. "Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces." Annales de l’institut Fourier 57.1 (2007): 163-195. <http://eudml.org/doc/10217>.
@article{Fillastre2007,
abstract = {A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.},
affiliation = {Université de Neuchâtel Institut de Mathématiques rue Emile-Argand 11, cp 158 2009 Neuchâtel (Switzerland) et Université Paul Sabatier Laboratoire Emile Picard 118 route de Narbonne 31062 Toulouse Cedex 4 (France)},
author = {Fillastre, François},
journal = {Annales de l’institut Fourier},
keywords = {Fuchsian; convex; polyhedron; hyperbolic; conical singularities; infinitesimal rigidity; Pogorelov map; Alexandrov; infinitesimal},
language = {eng},
number = {1},
pages = {163-195},
publisher = {Association des Annales de l’institut Fourier},
title = {Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces},
url = {http://eudml.org/doc/10217},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Fillastre, François
TI - Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 163
EP - 195
AB - A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.
LA - eng
KW - Fuchsian; convex; polyhedron; hyperbolic; conical singularities; infinitesimal rigidity; Pogorelov map; Alexandrov; infinitesimal
UR - http://eudml.org/doc/10217
ER -
References
top- A. D. Alexandrov, Convex polyhedra, (2005), Springer-Verlag, Berlin Zbl1067.52011MR2127379
- Marcel Berger, Géométrie. Vol. 5, (1977), CEDIC, Paris Zbl0423.51003MR536874
- Herbert Busemann, Convex surfaces, (1958), Interscience Publishers, Inc., New York Zbl0196.55101MR105155
- Peter Buser, Geometry and spectra of compact Riemann surfaces, 106 (1992), Birkhäuser Boston Inc., Boston, MA Zbl0770.53001MR1183224
- François Fillastre, Polyhedral realisation of metrics with conical singularities on compact surfaces in Lorentzian space-forms Zbl1123.53033
- Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine, Riemannian geometry, (1990), Springer-Verlag, Berlin Zbl0716.53001MR1083149
- Mikhael Gromov, Partial differential relations, 9 (1986), Springer-Verlag, Berlin Zbl0651.53001MR864505
- C. Indermitte, Th. M. Liebling, M. Troyanov, H. Clémençon, Voronoi diagrams on piecewise flat surfaces and an application to biological growth, Theoret. Comput. Sci. 263 (2001), 263-274 Zbl0974.68222MR1846934
- François Labourie, Métriques prescrites sur le bord des variétés hyperboliques de dimension , J. Differential Geom. 35 (1992), 609-626 Zbl0768.53017MR1163450
- François Labourie, Jean-Marc Schlenker, Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante, Math. Ann. 316 (2000), 465-483 Zbl0968.53047MR1752780
- Robert C. McOwen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 (1988), 222-224 Zbl0657.30033MR938672
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, (1988), John Wiley & Sons Inc., New York Zbl0667.30040MR927291
- Barrett O’Neill, Semi-Riemannian geometry, 103 (1983), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0531.53051MR719023
- A. V. Pogorelov, Extrinsic geometry of convex surfaces, (1973), American Mathematical Society, Providence, R.I. Zbl0311.53067MR346714
- Igor Rivin, Extra-large metrics Zbl0995.05072
- Igor Rivin, On geometry of convex polyhedra in hyperbolic 3-space, (June 1986) Zbl0784.52014
- Igor Rivin, Craig D. Hodgson, A characterization of compact convex polyhedra in hyperbolic -space, Invent. Math. 111 (1993), 77-111 Zbl0784.52013MR1193599
- Mathias Rousset, Sur la rigidité de polyèdres hyperboliques en dimension 3: cas de volume fini, cas hyperidéal cas fuchsien, Bull. Soc. Math. France 132 (2004), 233-261 Zbl1061.52007MR2075567
- I. Kh. Sabitov, Around the proof of the Legendre-Cauchy lemma on convex polygons, Sibirsk. Mat. Zh. 45 (2004), 892-919 Zbl1051.52015MR2091654
- Jean-Marc Schlenker, Hyperbolic manifolds with polyhedral boundary Zbl1091.53019
- Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), 109-169 Zbl1091.53019MR2208419
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, (1979), Publish or Perish Inc., Wilmington, Del. Zbl0439.53005MR394453
- William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift 1 (1998), 511-549 (electronic), Geom. Topol. Publ., Coventry Zbl0931.57010MR1668340
- Marc Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793-821 Zbl0724.53023MR1005085
- Heiner Zieschang, Elmar Vogt, Hans-Dieter Coldewey, Surfaces and planar discontinuous groups, 835 (1980), Springer, Berlin Zbl0438.57001MR606743
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.