Boundedness from to of Riesz transforms on a Lie group of exponential growth
Peter Sjögren[1]; Maria Vallarino[2]
- [1] Göteborg University and Chalmers University of Technology Department of Mathematical Sciences 412 96 Göteborg (Sweden)
- [2] Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni Via R. Cozzi 53 20125 Milano (Italy)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1117-1151
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSjögren, Peter, and Vallarino, Maria. "Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth." Annales de l’institut Fourier 58.4 (2008): 1117-1151. <http://eudml.org/doc/10344>.
@article{Sjögren2008,
abstract = {Let $G$ be the Lie group $\{\mathbb\{R\}\}^2\ltimes\{\mathbb\{R\}\}^+$ endowed with the Riemannian symmetric space structure. Let $X_0,\, X_1,\,X_2$ be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian $\Delta =-(X_0^2+X_1^2+X_2^2)$. In this paper we consider the first order Riesz transforms $R_i=X_i\Delta ^\{-1/2\}$ and $S_i=\Delta ^\{-1/2\}X_i$, for $i=0,1,2$. We prove that the operators $R_i$, but not the $S_i$, are bounded from the Hardy space $H^1$ to $L^1$. We also show that the second-order Riesz transforms $T_\{ij\}=X_i\Delta ^\{-1\}X_j$ are bounded from $H^1$ to $L^1$, while the transforms $S_\{ij\}=\Delta ^\{-1\}X_iX_j$ and $R_\{ij\}=X_iX_j\Delta ^\{-1\}$, for $i,j=0,1,2$, are not.},
affiliation = {Göteborg University and Chalmers University of Technology Department of Mathematical Sciences 412 96 Göteborg (Sweden); Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni Via R. Cozzi 53 20125 Milano (Italy)},
author = {Sjögren, Peter, Vallarino, Maria},
journal = {Annales de l’institut Fourier},
keywords = {Singular integrals; Riesz transforms; Hardy space; Lie groups; exponential growth; singular integrals},
language = {eng},
number = {4},
pages = {1117-1151},
publisher = {Association des Annales de l’institut Fourier},
title = {Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth},
url = {http://eudml.org/doc/10344},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Sjögren, Peter
AU - Vallarino, Maria
TI - Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1117
EP - 1151
AB - Let $G$ be the Lie group ${\mathbb{R}}^2\ltimes{\mathbb{R}}^+$ endowed with the Riemannian symmetric space structure. Let $X_0,\, X_1,\,X_2$ be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian $\Delta =-(X_0^2+X_1^2+X_2^2)$. In this paper we consider the first order Riesz transforms $R_i=X_i\Delta ^{-1/2}$ and $S_i=\Delta ^{-1/2}X_i$, for $i=0,1,2$. We prove that the operators $R_i$, but not the $S_i$, are bounded from the Hardy space $H^1$ to $L^1$. We also show that the second-order Riesz transforms $T_{ij}=X_i\Delta ^{-1}X_j$ are bounded from $H^1$ to $L^1$, while the transforms $S_{ij}=\Delta ^{-1}X_iX_j$ and $R_{ij}=X_iX_j\Delta ^{-1}$, for $i,j=0,1,2$, are not.
LA - eng
KW - Singular integrals; Riesz transforms; Hardy space; Lie groups; exponential growth; singular integrals
UR - http://eudml.org/doc/10344
ER -
References
top- G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math. 44 (1992), 691-727 Zbl0792.22005MR1178564
- J.P. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
- J.P. Anker, E. Damek, C. Yacoub, Spherical Analysis on harmonic groups, Ann. Scuola Nom. Sup. Pisa Cl. Sci. 23 (1996), 643-679 Zbl0881.22008MR1469569
- P. Auscher, T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sci. École Norm. Sup. 4 (2005), 531-555 Zbl1116.58023MR2185868
- P. Auscher, T. Coulhon, X.T. Duong, S. Hofmann, Riesz transform on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-957 Zbl1086.58013MR2119242
- D. Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilité XXI, Lecture Notes in Math. 1247 (1987), 137-172 Zbl0629.58018MR941980
- J.Ch. Chen, Ch. Luo, Duality of and BMO on positively curved manifolds and their characterizations, Lecture Notes in Math. 1494 (1991), 23-38 Zbl0812.43001MR1187062
- R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in Analysis, Bull. Am. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
- T. Coulhon, X.T. Duong, Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151-1169 Zbl0973.58018MR1458299
- T. Coulhon, X.T. Duong, Riesz transforms for , C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 975-980 Zbl0987.43001MR1838122
- T. Coulhon, X.T. Duong, Estimates of lower bounds for the heat kernel on conical manifolds and Riesz transform, Arch. Math. (Basel) 83 (2004), 229-242 Zbl1076.58017MR2108551
- M. Cowling, G. Gaudry, S. Giulini, G. Mauceri, Weak type estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637-649 Zbl0722.22006MR967310
- G. Gaudry, T. Qian, P. Sjögren, Singular integrals associated to the Laplacian on the affine group , Ark. Mat. 30 (1992), 259-281 Zbl0776.43003MR1289755
- G. Gaudry, P. Sjögren, Singular integrals on Iwasawa groups of rank , J. Reine Angew. Math. 479 (1996), 39-66 Zbl0855.43010MR1414387
- G. Gaudry, P. Sjögren, Haar-like expansions and boundedness of a Riesz operator on a solvable Lie group, Math. Z. 232 (1999), 241-256 Zbl0936.43006MR1718685
- S. Giulini, P. Sjögren, A note on maximal functions on a solvable Lie group, Arch. Math. (Basel) 55 (1990), 156-160 Zbl0693.42020MR1064383
- W. Hebisch, T. Steger, Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003), 37-61 Zbl1035.43001MR2023952
- N. Lohoué, N. Varopoulos, Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 559-560 Zbl0582.43003MR816628
- M. Marias, E. Russ, -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, Ark. Mat. 41 (2003), 115-132 Zbl1038.42016MR1971944
- E. Russ, - boundedness of Riesz transforms on Riemannian manifolds and on graphs, Potential Anal. 14 (2001), 301-330 Zbl0982.42008MR1822920
- L. Saloff-Coste, Analyse sur les groupes de Lie á croissance polynomiale, Ark. Mat. 28 (1990), 315-331 Zbl0715.43009MR1084020
- P. Sjögren, An estimate for a first-order Riesz operator on the affine group, Trans. Amer. Math. Soc. 351 (1999), 3301-3314 Zbl0920.43006MR1475695
- E.M. Stein, Harmonic Analysis, (1993), Princeton University Press Zbl0821.42001MR1232192
- M. Vallarino, Spaces and on exponential growth groups, (2007)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.