Boundedness from H 1 to L 1 of Riesz transforms on a Lie group of exponential growth

Peter Sjögren[1]; Maria Vallarino[2]

  • [1] Göteborg University and Chalmers University of Technology Department of Mathematical Sciences 412 96 Göteborg (Sweden)
  • [2] Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni Via R. Cozzi 53 20125 Milano (Italy)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 4, page 1117-1151
  • ISSN: 0373-0956

Abstract

top
Let G be the Lie group 2 + endowed with the Riemannian symmetric space structure. Let X 0 , X 1 , X 2 be a distinguished basis of left-invariant vector fields of the Lie algebra of G and define the Laplacian Δ = - ( X 0 2 + X 1 2 + X 2 2 ) . In this paper we consider the first order Riesz transforms R i = X i Δ - 1 / 2 and S i = Δ - 1 / 2 X i , for i = 0 , 1 , 2 . We prove that the operators R i , but not the S i , are bounded from the Hardy space H 1 to L 1 . We also show that the second-order Riesz transforms T i j = X i Δ - 1 X j are bounded from H 1 to L 1 , while the transforms S i j = Δ - 1 X i X j and R i j = X i X j Δ - 1 , for i , j = 0 , 1 , 2 , are not.

How to cite

top

Sjögren, Peter, and Vallarino, Maria. "Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth." Annales de l’institut Fourier 58.4 (2008): 1117-1151. <http://eudml.org/doc/10344>.

@article{Sjögren2008,
abstract = {Let $G$ be the Lie group $\{\mathbb\{R\}\}^2\ltimes\{\mathbb\{R\}\}^+$ endowed with the Riemannian symmetric space structure. Let $X_0,\, X_1,\,X_2$ be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian $\Delta =-(X_0^2+X_1^2+X_2^2)$. In this paper we consider the first order Riesz transforms $R_i=X_i\Delta ^\{-1/2\}$ and $S_i=\Delta ^\{-1/2\}X_i$, for $i=0,1,2$. We prove that the operators $R_i$, but not the $S_i$, are bounded from the Hardy space $H^1$ to $L^1$. We also show that the second-order Riesz transforms $T_\{ij\}=X_i\Delta ^\{-1\}X_j$ are bounded from $H^1$ to $L^1$, while the transforms $S_\{ij\}=\Delta ^\{-1\}X_iX_j$ and $R_\{ij\}=X_iX_j\Delta ^\{-1\}$, for $i,j=0,1,2$, are not.},
affiliation = {Göteborg University and Chalmers University of Technology Department of Mathematical Sciences 412 96 Göteborg (Sweden); Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni Via R. Cozzi 53 20125 Milano (Italy)},
author = {Sjögren, Peter, Vallarino, Maria},
journal = {Annales de l’institut Fourier},
keywords = {Singular integrals; Riesz transforms; Hardy space; Lie groups; exponential growth; singular integrals},
language = {eng},
number = {4},
pages = {1117-1151},
publisher = {Association des Annales de l’institut Fourier},
title = {Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth},
url = {http://eudml.org/doc/10344},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Sjögren, Peter
AU - Vallarino, Maria
TI - Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1117
EP - 1151
AB - Let $G$ be the Lie group ${\mathbb{R}}^2\ltimes{\mathbb{R}}^+$ endowed with the Riemannian symmetric space structure. Let $X_0,\, X_1,\,X_2$ be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian $\Delta =-(X_0^2+X_1^2+X_2^2)$. In this paper we consider the first order Riesz transforms $R_i=X_i\Delta ^{-1/2}$ and $S_i=\Delta ^{-1/2}X_i$, for $i=0,1,2$. We prove that the operators $R_i$, but not the $S_i$, are bounded from the Hardy space $H^1$ to $L^1$. We also show that the second-order Riesz transforms $T_{ij}=X_i\Delta ^{-1}X_j$ are bounded from $H^1$ to $L^1$, while the transforms $S_{ij}=\Delta ^{-1}X_iX_j$ and $R_{ij}=X_iX_j\Delta ^{-1}$, for $i,j=0,1,2$, are not.
LA - eng
KW - Singular integrals; Riesz transforms; Hardy space; Lie groups; exponential growth; singular integrals
UR - http://eudml.org/doc/10344
ER -

References

top
  1. G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math. 44 (1992), 691-727 Zbl0792.22005MR1178564
  2. J.P. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
  3. J.P. Anker, E. Damek, C. Yacoub, Spherical Analysis on harmonic A N groups, Ann. Scuola Nom. Sup. Pisa Cl. Sci. 23 (1996), 643-679 Zbl0881.22008MR1469569
  4. P. Auscher, T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sci. École Norm. Sup. 4 (2005), 531-555 Zbl1116.58023MR2185868
  5. P. Auscher, T. Coulhon, X.T. Duong, S. Hofmann, Riesz transform on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-957 Zbl1086.58013MR2119242
  6. D. Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilité XXI, Lecture Notes in Math. 1247 (1987), 137-172 Zbl0629.58018MR941980
  7. J.Ch. Chen, Ch. Luo, Duality of H 1 and BMO on positively curved manifolds and their characterizations, Lecture Notes in Math. 1494 (1991), 23-38 Zbl0812.43001MR1187062
  8. R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in Analysis, Bull. Am. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
  9. T. Coulhon, X.T. Duong, Riesz transforms for 1 p 2 , Trans. Amer. Math. Soc. 351 (1999), 1151-1169 Zbl0973.58018MR1458299
  10. T. Coulhon, X.T. Duong, Riesz transforms for p &gt; 2 , C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 975-980 Zbl0987.43001MR1838122
  11. T. Coulhon, X.T. Duong, Estimates of lower bounds for the heat kernel on conical manifolds and Riesz transform, Arch. Math. (Basel) 83 (2004), 229-242 Zbl1076.58017MR2108551
  12. M. Cowling, G. Gaudry, S. Giulini, G. Mauceri, Weak type ( 1 , 1 ) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637-649 Zbl0722.22006MR967310
  13. G. Gaudry, T. Qian, P. Sjögren, Singular integrals associated to the Laplacian on the affine group a x + b , Ark. Mat. 30 (1992), 259-281 Zbl0776.43003MR1289755
  14. G. Gaudry, P. Sjögren, Singular integrals on Iwasawa N A groups of rank 1 , J. Reine Angew. Math. 479 (1996), 39-66 Zbl0855.43010MR1414387
  15. G. Gaudry, P. Sjögren, Haar-like expansions and boundedness of a Riesz operator on a solvable Lie group, Math. Z. 232 (1999), 241-256 Zbl0936.43006MR1718685
  16. S. Giulini, P. Sjögren, A note on maximal functions on a solvable Lie group, Arch. Math. (Basel) 55 (1990), 156-160 Zbl0693.42020MR1064383
  17. W. Hebisch, T. Steger, Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003), 37-61 Zbl1035.43001MR2023952
  18. N. Lohoué, N. Varopoulos, Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 559-560 Zbl0582.43003MR816628
  19. M. Marias, E. Russ, H 1 -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, Ark. Mat. 41 (2003), 115-132 Zbl1038.42016MR1971944
  20. E. Russ, H 1 - L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs, Potential Anal. 14 (2001), 301-330 Zbl0982.42008MR1822920
  21. L. Saloff-Coste, Analyse sur les groupes de Lie á croissance polynomiale, Ark. Mat. 28 (1990), 315-331 Zbl0715.43009MR1084020
  22. P. Sjögren, An estimate for a first-order Riesz operator on the affine group, Trans. Amer. Math. Soc. 351 (1999), 3301-3314 Zbl0920.43006MR1475695
  23. E.M. Stein, Harmonic Analysis, (1993), Princeton University Press Zbl0821.42001MR1232192
  24. M. Vallarino, Spaces H 1 and B M O on exponential growth groups, (2007) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.