Spherical analysis on harmonic A N groups

Jean-Philippe Anker; Ewa Damek; Chokri Yacoub

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 4, page 643-679
  • ISSN: 0391-173X

How to cite


Anker, Jean-Philippe, Damek, Ewa, and Yacoub, Chokri. "Spherical analysis on harmonic $A N$ groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.4 (1996): 643-679. <http://eudml.org/doc/84244>.

author = {Anker, Jean-Philippe, Damek, Ewa, Yacoub, Chokri},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-spaces on Lie groups; positive radial convolutions kernels; Kunze-Stein phenomenon; spherical functions; Hardy-Littlewood maximal functions; heat kernel and semigroup; Abel transform; Beltrami operator; Riesz transform},
language = {eng},
number = {4},
pages = {643-679},
publisher = {Scuola normale superiore},
title = {Spherical analysis on harmonic $A N$ groups},
url = {http://eudml.org/doc/84244},
volume = {23},
year = {1996},

AU - Anker, Jean-Philippe
AU - Damek, Ewa
AU - Yacoub, Chokri
TI - Spherical analysis on harmonic $A N$ groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 4
SP - 643
EP - 679
LA - eng
KW - -spaces on Lie groups; positive radial convolutions kernels; Kunze-Stein phenomenon; spherical functions; Hardy-Littlewood maximal functions; heat kernel and semigroup; Abel transform; Beltrami operator; Riesz transform
UR - http://eudml.org/doc/84244
ER -


  1. [An1] J.-Ph. Anker, Le noyau de la chaleur sur les espaces symétriques U(p, q) / U( p) x U(q) , In: "Harmonic Analysis, Luxembourg 1987", P. Eymard - J.-P. Pier (eds.), Lecture Notes in Mathematics1359, Springer, 1988, pp. 60-82 Zbl0669.43009MR974304
  2. [An2] J.-Ph. Anker, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan, J. Funct. Anal.96 (1991), 331-349. Zbl0732.43006MR1101261
  3. [An3] J.-Ph. Anker, L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math.132 (1990), 597-628 Zbl0741.43009MR1078270
  4. [An4] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J.65 (1992), 257-297. Zbl0764.43005MR1150587
  5. [An5] J.-Ph. Anker, Analyse sphérique sur les espaces hyperboliques, Cours D.E.A. 1992-1993, Université Nancy I. 
  6. [AJ] J.-Ph. Anker, - L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, in preparation. Zbl0942.43005
  7. [AMPS] J.-Ph. Anker - P. Martinot - E. Pedon - A. Setti, The wave equation on harmonic AN groups, in preparation. 
  8. [AS] J.-Ph. Anker - A. Seeger, Lp estimates for functions of the Laplacian on noncompact manifolds, in preparation. 
  9. [As] F. Astengo, Asymptotic expansions for spherical functions and multipliers on solvable extensions of H-type groups, J. Lie Theory5 (1995), 147-164. 
  10. [ACD] F. Astengo - R. Camporesi - B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, preprint (1996). Zbl0894.43003MR1456271
  11. [Bo] J. Boggino, Generalized Heisenberg groups and solvmanifolds naturally associated, Rend. Sem. Mat. Univ. Politec. Torino43 (1985), 529-547. Zbl0625.53050MR884876
  12. [BTV] J. Berndt - F. Tricerri - L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics1598, Springer, 1995. Zbl0818.53067MR1340192
  13. [CS] J.-L. Clerc - E.M. Stein, Lp-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. USA71 (1974), 3911-3912. Zbl0296.43004MR367561
  14. [Co1] M.G. Cowling, The Kunze-Stein phenomenon, Ann. of Math.107 (1978), 209-234. Zbl0363.22007MR507240
  15. [Co2] M.G. Cowling, Unitary and uniformly bounded representations of some simple Lie groups, In: "Harmonic analysis and group representations, C.I.M.E. 1980", Liguori, Napoli, 1982, pp. 49-128. MR777340
  16. [Co3] M.G. Cowling, Harmonic analysis on some nilpotent Lie groups (with application to the representation theory of some semisimple Lie groups), In: "Topics in modem harmonic analysis (Proc. Sem. Torino Milano, May-June 1982)" vol. I, Ist. Naz. Alta Mat. F. Severi, Roma, 1983, pp. 81-123. Zbl0541.22005MR748862
  17. [CDKR1] M.G. Cowling - A.H. Dooley - A. Korányi - F. Ricci, H-type groups and Iwasawa decompositions, Adv. Math.87 (1991), 1-41. Zbl0761.22010MR1102963
  18. [CDKR2] M.G. Cowling - A.H. Dooley - A. Korányi - F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. (to appear). Zbl0966.53039MR1705176
  19. [CF] M.G. Cowling - J.J.F. Fournier, Inclusions and non-inclusions of spaces of convolution operators, Trans. Amer. Math. Soc.221 (1976), 59-95. Zbl0331.43007MR493164
  20. [CGGM] M.G. Cowling - G.I. Gaudry - S. Giulini - G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc.323 (1991), 637-649. Zbl0722.22006MR967310
  21. [CGM] M.G. Cowling - S. Giulini - S. Meda, Lp-Lq estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces I, Duke Math. J.72 (1993), 109-150. Zbl0807.43002MR1242882
  22. [CH] M.G. Cowling - U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. math.96 (1989), 507-549. Zbl0681.43012MR996553
  23. [Dam1] E. Damek, Geometry ofa semi-direct extension ofa Heisenberg type nilpotent group, Collect. Math.53 (1987), 255-268. Zbl0661.53033MR924070
  24. [Dam2] E. Damek, Curvature of a semi-direct extension of a Heisenberg type nilpotent group, Collect. Math.53 (1987), 249-253. Zbl0661.53034MR924069
  25. [Dam3] E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Collect. Math.53 (1987), 239-247. Zbl0661.53035MR924068
  26. [Dam4] E. Damek, Harmonic functions on a semidirect extension of type H nilpotent groups, Trans. Amer. Math. Soc.290 (1985), 375-384. Zbl0593.43010MR787971
  27. [DR1] E. Damek - F. Ricci, A class ofnonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc.27 (1992), 139-142. Zbl0755.53032MR1142682
  28. [DR2] E. Damek - F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal.2 (1992), 213-248. Zbl0788.43008MR1164603
  29. [Dav] E.B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
  30. [DM] E.B. Davies - N. Mandouvalos, Heat kernels bounds on hyperbolic space and Kleinian groups, Proc. London Math. Soc.57 (1988), 182-208. Zbl0643.30035MR940434
  31. [Di1] B. Di Blasio, Analisi di Fourier sferica su estensioni risolubili di gruppi di Heisenberg generalizzati, Tesi di Dottorato, Politecnico di Torino (1996). 
  32. [Di2] B. Di Blasio, Positive definite spherical functions on harmonic spaces NA, Boll. Unione Mat. Ital. (to appear). Zbl0898.43005MR1489047
  33. [Di3] B. Di Blasio, Paley-Wiener type theorems on harmonic extensions of H-type groups, Monatsh. Math. (to appear). Zbl0887.43001MR1428881
  34. [Di4] B. Di Blasio, An extension of the theory of Gelfand pairs to radial functions on Lie groups, Boll. Unione Mat. Ital. (to appear). Zbl0885.22016MR1479515
  35. [DZ] A.H. Dooley - G. Zhang, Spherical functions on H-type groups, preprint (1995). 
  36. [Fa] J. Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, In: "Analyse Harmonique", J.-L. Clerc et al. (eds.), C.I.M.P.A., Nice1983, pp. 315-446. 
  37. [FK] M. Flensted-Jensen - T.H. Koornwinder, Positive definite spherical functions on a non-compact, rank one symmetric space, In: "Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strabourg 1976-78", P. Eymard et al. (eds.), Lecture Notes in Mathematics739, Springer, 1979, pp. 249-282. Zbl0433.43014MR560841
  38. [GM] S. Giulini - G. Mauceri, Analysis of a distinguished Laplacian on solvable Lie groups, Math. Nachr.163 (1993), 151-162. Zbl0801.43002MR1235064
  39. [Hel] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. Zbl0543.58001MR754767
  40. [Her] C. Herz, Problems of extrapolation and spectral synthesis on groups, In: "Conference on harmonic analysis, College Park 1971", D. Gulick - R. L. Lipsman (eds.), Lecture Notes in Mathematics266, Springer, 1972, pp. 157-166. Zbl0246.43004MR394054
  41. [Ka1] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by compositions of quadratic forms, Trans. Amer. Math. Soc.258 (1980), 147-153. Zbl0393.35015MR554324
  42. [Ka2] A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Ded.11 (1981), 127-136. Zbl0495.53046MR621376
  43. [Ka3] A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc.15 (1983), 35-42. Zbl0521.53048MR686346
  44. [KR] A. Kaplan - F. Ricci, Harmonic analysis on groups of Heisenberg type, Lecture Notes in Mathematics992, Springer, 1983, pp. 416-435. Zbl0521.43008MR729367
  45. [Koo] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, In: "Special functions: Group theoretical aspects and applications", R. A. Askey et al. (eds.), Reidel, 1984, pp. 1-85. Zbl0584.43010MR774055
  46. [Kor] A. Korányi, Geometric properties of Heisenberg-type groups, Adv. Math.56 (1985), 28-38. Zbl0589.53053MR782541
  47. [Li] R.L. Lipsman, An indicator diagram II. The Lp convolution theorem for connected unimodular groups, Duke. Math. J.37 (1970), 459-466. Zbl0201.17601MR267045
  48. [Lo] N. Lohoué, Inégalités de Sobolev pour les sous Laplaciens de certains groupes unimodulaires, Geom. Funct. Anal.2 (1992), 394-420. Zbl0807.22007MR1191567
  49. [LRy] N. Lohoué - TH. Rychener, Die Resolvente von Δ auf symmetrischen Räumen vom nichtkompakten Typ, Comm. Math. Helv.57 (1982), 445-468. Zbl0505.53022
  50. [LZ] N. Lohoué - Zhu Fu Liu, Estimation faible de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I302 (1986), 303-305. Zbl0583.42006MR838580
  51. [LRo] G. Lorang - B. Roynette, Etude d'unefonctionnelle liée au pont de Bessel, Ann. Inst. Henri Poincaré Section B (Prob. Stat.)32 (1996), 107-133. Zbl0842.60076MR1373728
  52. [MW] R.J. Miatello - N.R. Wallach, The resolvent ofthe Laplacian on locally symmetric spaces, J. Diff. Geom.36 (1992), 663-698. Zbl0766.53044MR1189500
  53. [Mu] A. Munch, Comportement exact du noyau de la chaleur sur les espaces hyperboliques, Mémoire D.E.A., Université Nancy I1993. 
  54. [Ric1] F. Ricci, Commutative algebras of invariant functions on groups of Heisenberg type, J. London Math. Soc.32 (1985), 265-271. Zbl0592.22009MR811785
  55. [Ric2] F. Ricci, The spherical transform on harmonic extensions of H-type groups, Rend. Sem. Mat. Univ. Politec. Torino50 (1992), 381-392. Zbl0829.43021MR1261450
  56. [Rie] C. Riehm, The automorphism group of a composition of quadratic forms, Trans. Amer. Math. Soc.269 (1982), 403-414. Zbl0483.10021MR637698
  57. [ST] R.J. Stanton - P.A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math.140 (1978), 251-276. Zbl0411.43014MR511124
  58. [Ste] E.M. Stein, Analytic continuation of group representations, Adv. Math.4 (1970), 172-207. Zbl0194.16201MR263985
  59. [Str] J.-O. Strömberg, Weak type L1 estimates for maximal functions on non-compact symmetric spaces, Ann. of Math.114 (1981), 115-126. Zbl0472.43010MR625348
  60. [Sz1] Z.I. Szabó, The Lichnerowicz conjecture on harmonic manifolds, J. Differential Geom.31 (1990), 1-28. Zbl0686.53042MR1030663
  61. [Sz2] Z.I. Szabó, Spectral theory for operator families on Riemannian manifolds, In: "Differential geometry, UCLA 1990", R. Greene - S. T. Yau (eds.) Proc. Symp. Pure Math. 54, 3, 1993, pp. 615-665. Zbl0791.58100MR1216651
  62. [Ta] M.E. Taylor, Lp estimates on functions of the Laplace operator, Duke Math. J.58 (1989), 773-793. Zbl0691.58043MR1016445
  63. [Vr] L. Vretare, On Lp Fourier multipliers on certain symmetric spaces, Math. Scand.37 (1975),111-121. Zbl0315.43005MR415211
  64. [Ya] C. Yacoub, Analyse radiale sur des variétés harmoniques AN et d'opérateurs différentiels généralisant l'opérateur de Jacobi, Thèse, Université Paris-Sud / Orsay, 1994. 

Citations in EuDML Documents

  1. Jamel El Kamel, Chokri Yacoub, Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
  2. Francesca Astengo, Bianca di Blasio, A Paley-Wiener theorem on NA harmonic spaces
  3. Jean-Philippe Anker, Vittoria Pierfelice, Nonlinear Schrödinger equation on real hyperbolic spaces
  4. Francesca Astengo, Bianca Di Blasio, Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
  5. Peter Sjögren, Maria Vallarino, Boundedness from H 1 to L 1 of Riesz transforms on a Lie group of exponential growth
  6. Ewa Damek, Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms
  7. Gilles Carron, Emmanuel Pedon, On the differential form spectrum of hyperbolic manifolds

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.