Rotation sets for graph maps of degree 1
Lluís Alsedà[1]; Sylvie Ruette[2]
- [1] Universitat Autònoma de Barcelona Departament de Matemàtiques 08913 Cerdanyola del Vallès, Barcelona (Spain)
- [2] Université Paris-Sud 11 Laboratoire de Mathématiques CNRS UMR 8628 Bâtiment 425 91405 Orsay cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1233-1294
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlsedà, Lluís, and Ruette, Sylvie. "Rotation sets for graph maps of degree 1." Annales de l’institut Fourier 58.4 (2008): 1233-1294. <http://eudml.org/doc/10348>.
@article{Alsedà2008,
abstract = {For a continuous map on a topological graph containing a loop $S$ it is possible to define the degree (with respect to the loop $S$) and, for a map of degree $1$, rotation numbers. We study the rotation set of these maps and the periods of periodic points having a given rotation number. We show that, if the graph has a single loop $S$ then the set of rotation numbers of points in $S$ has some properties similar to the rotation set of a circle map; in particular it is a compact interval and for every rational $\alpha $ in this interval there exists a periodic point of rotation number $\alpha $.For a special class of maps called combed maps, the rotation set displays the same nice properties as the continuous degree one circle maps.},
affiliation = {Universitat Autònoma de Barcelona Departament de Matemàtiques 08913 Cerdanyola del Vallès, Barcelona (Spain); Université Paris-Sud 11 Laboratoire de Mathématiques CNRS UMR 8628 Bâtiment 425 91405 Orsay cedex (France)},
author = {Alsedà, Lluís, Ruette, Sylvie},
journal = {Annales de l’institut Fourier},
keywords = {Rotation numbers; graph maps; sets of periods; rotation numbers; one-dimensional dynamics},
language = {eng},
number = {4},
pages = {1233-1294},
publisher = {Association des Annales de l’institut Fourier},
title = {Rotation sets for graph maps of degree 1},
url = {http://eudml.org/doc/10348},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Alsedà, Lluís
AU - Ruette, Sylvie
TI - Rotation sets for graph maps of degree 1
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1233
EP - 1294
AB - For a continuous map on a topological graph containing a loop $S$ it is possible to define the degree (with respect to the loop $S$) and, for a map of degree $1$, rotation numbers. We study the rotation set of these maps and the periods of periodic points having a given rotation number. We show that, if the graph has a single loop $S$ then the set of rotation numbers of points in $S$ has some properties similar to the rotation set of a circle map; in particular it is a compact interval and for every rational $\alpha $ in this interval there exists a periodic point of rotation number $\alpha $.For a special class of maps called combed maps, the rotation set displays the same nice properties as the continuous degree one circle maps.
LA - eng
KW - Rotation numbers; graph maps; sets of periods; rotation numbers; one-dimensional dynamics
UR - http://eudml.org/doc/10348
ER -
References
top- Ll. Alsedà, D. Juher, P. Mumbrú, Sets of periods for piecewise monotone tree maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 311-341 Zbl1056.37049MR1972155
- Ll. Alsedà, D. Juher, P. Mumbrú, On the preservation of combinatorial types for maps on trees, Ann. Inst. Fourier (Grenoble) 55 (2005), 2375-2398 Zbl1085.37035MR2207387
- Ll. Alsedà, D. Juher, P. Mumbrú, Periodic behavior on trees, Ergodic Theory Dynam. Systems 25 (2005), 1373-1400 Zbl1077.37031MR2173425
- Ll. Alsedà, D. Juher, P. Mumbrú, Minimal dynamics for tree maps, Discrete Contin. Dyn. Syst. Ser. A 3 (2006), 511-541 Zbl1146.37024MR2373202
- Ll. Alsedà, J. Llibre, M. Misiurewicz, Periodic orbits of maps of , Trans. Amer. Math. Soc. 313 (1989), 475-538 Zbl0803.54032MR958882
- Ll. Alsedà, J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, (1993), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0843.58034MR1255515
- Ll. Alsedà, F. Mañosas, P. Mumbrú, Minimizing topological entropy for continuous maps on graphs, Ergodic Theory Dynam. Systems 20 (2000), 1559-1576 Zbl0992.37014MR1804944
- S. Baldwin, An extension of Sharkovskiĭ’s theorem to the , Ergodic Theory Dynam. Systems 11 (1991), 249-271 Zbl0741.58010
- S. Baldwin, J. Llibre, Periods of maps on trees with all branching points fixed, Ergodic Theory Dynam. Systems 15 (1995), 239-246 Zbl0831.58020MR1332402
- C. Bernhardt, Vertex maps for trees: algebra and periods of periodic orbits, Discrete Contin. Dyn. Syst. 14 (2006), 399-408 Zbl1110.37033MR2171718
- L. Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580 Zbl0365.58015MR509258
- L. Block, J. Guckenheimer, M. Misiurewicz, L. S. Young, Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems (1980), 18-34, Springer-Verlag Zbl0447.58028MR591173
- R. Ito, Rotation sets are closed, Math. Proc. Cambridge Philos. Soc. 89 (1981), 107-111 Zbl0484.58027MR591976
- M. C. Leseduarte, J. Llibre, On the set of periods for maps, Trans. Amer. Math. Soc. 347 (1995), 4899-4942 Zbl0868.54035MR1316856
- J. Llibre, J. Paraños, J. A. Rodríguez, Periods for continuous self-maps of the figure-eight space, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1743-1754 Zbl1056.37051MR2015625
- M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems 2 (1982), 221-227 (1983) Zbl0508.58038MR693977
- F. Rhodes, C. L. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2) 34 (1986), 360-368 Zbl0623.58008MR856518
- A. N. Sharkovskiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž. 16 (1964), 61-71 MR159905
- A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Thirty years after Sharkovskiĭ’s theorem: new perspectives (Murcia, 1994) 8 (1995), 1-11, World Sci. Publ., River Edge, NJ
- C. T. C. Wall, A geometric introduction to topology, (1972), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. Zbl0261.55001MR478128
- F. Zeng, H. Mo, W. Guo, Q. Gao, -limit set of a tree map, Northeast. Math. J. 17 (2001), 333-339 Zbl1026.37032MR2011841
- K. Ziemian, Rotation sets for subshifts of finite type, Fund. Math. 146 (1995), 189-201 Zbl0821.58017MR1314983
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.