Rotation sets for subshifts of finite type

Krystyna Ziemian

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 2, page 189-201
  • ISSN: 0016-2736

Abstract

top
For a dynamical system (X,f) and a function φ : X N the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.

How to cite

top

Ziemian, Krystyna. "Rotation sets for subshifts of finite type." Fundamenta Mathematicae 146.2 (1995): 189-201. <http://eudml.org/doc/212061>.

@article{Ziemian1995,
abstract = {For a dynamical system (X,f) and a function $φ:X → ℝ^N$ the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.},
author = {Ziemian, Krystyna},
journal = {Fundamenta Mathematicae},
keywords = {symbolic dynamics; dynamical system; subshift of finite type; rotation set},
language = {eng},
number = {2},
pages = {189-201},
title = {Rotation sets for subshifts of finite type},
url = {http://eudml.org/doc/212061},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Ziemian, Krystyna
TI - Rotation sets for subshifts of finite type
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 2
SP - 189
EP - 201
AB - For a dynamical system (X,f) and a function $φ:X → ℝ^N$ the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.
LA - eng
KW - symbolic dynamics; dynamical system; subshift of finite type; rotation set
UR - http://eudml.org/doc/212061
ER -

References

top
  1. [ALM] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynamics 5, World Scientific, Singapore, 1993. Zbl0843.58034
  2. [A] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Grundlehren Math. Wiss. 250, Springer, New York, 1988. 
  3. [Bi] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932), 1-26. Zbl58.0633.01
  4. [Bl1] A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval, preprint, 1993. 
  5. [Bl2] A. Blokh, Functional rotation numbers for one dimensional maps, preprint, 1993. 
  6. [Ch] A. Chenciner, La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather, Séminaire Bourbaki vol. 1983/84, Astérisque 121-122 (1985), 147-170. 
  7. [F] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107-115. Zbl0664.58028
  8. [He] M. R. Herman, Existence et non existence de tores invariants par des difféomorphismes symplectiques, Séminaire sur les Équations aux Dérivées Partielles 1987-1988, Exp. No. XIV, École Polytechnique, Palaiseau, 1988. Zbl0664.58005
  9. [KMG] S. Kim, R. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity 2 (1989), 391-404. Zbl0678.58034
  10. [LM] J. Llibre and R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynamical Systems 11 (1991), 115-128. Zbl0699.58049
  11. [MaT] B. Marcus and S. Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, ibid., 129-180. Zbl0725.60071
  12. [MN] M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc. 456 (1991). Zbl0745.58019
  13. [MT] M. Misiurewicz and J. Tolosa, Entropy of snakes and the restricted variational principle, Ergodic Theory Dynamical Systems 12 (1992), 791-802. Zbl0784.54025
  14. [MZ1] M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), 490-506. Zbl0663.58022
  15. [MZ2] M. Misiurewicz and K. Ziemian, Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math. 137 (1991), 45-52. Zbl0739.58033
  16. [NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5-71. Zbl0518.58031
  17. [O] G. Orwell, Animal Farm, Harcourt, Brace and Co., New York, 1946. 
  18. [P] H. Poincaré, Sur les courbes définies par les équations différentielles, in: Oeuvres complètes, Vol. 1, Gauthier-Villars, Paris, 1952, 137-158. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.