Rotation sets for subshifts of finite type
Fundamenta Mathematicae (1995)
- Volume: 146, Issue: 2, page 189-201
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topZiemian, Krystyna. "Rotation sets for subshifts of finite type." Fundamenta Mathematicae 146.2 (1995): 189-201. <http://eudml.org/doc/212061>.
@article{Ziemian1995,
abstract = {For a dynamical system (X,f) and a function $φ:X → ℝ^N$ the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.},
author = {Ziemian, Krystyna},
journal = {Fundamenta Mathematicae},
keywords = {symbolic dynamics; dynamical system; subshift of finite type; rotation set},
language = {eng},
number = {2},
pages = {189-201},
title = {Rotation sets for subshifts of finite type},
url = {http://eudml.org/doc/212061},
volume = {146},
year = {1995},
}
TY - JOUR
AU - Ziemian, Krystyna
TI - Rotation sets for subshifts of finite type
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 2
SP - 189
EP - 201
AB - For a dynamical system (X,f) and a function $φ:X → ℝ^N$ the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.
LA - eng
KW - symbolic dynamics; dynamical system; subshift of finite type; rotation set
UR - http://eudml.org/doc/212061
ER -
References
top- [ALM] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynamics 5, World Scientific, Singapore, 1993. Zbl0843.58034
- [A] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Grundlehren Math. Wiss. 250, Springer, New York, 1988.
- [Bi] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932), 1-26. Zbl58.0633.01
- [Bl1] A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type ordering for patterns on the interval, preprint, 1993.
- [Bl2] A. Blokh, Functional rotation numbers for one dimensional maps, preprint, 1993.
- [Ch] A. Chenciner, La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather, Séminaire Bourbaki vol. 1983/84, Astérisque 121-122 (1985), 147-170.
- [F] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107-115. Zbl0664.58028
- [He] M. R. Herman, Existence et non existence de tores invariants par des difféomorphismes symplectiques, Séminaire sur les Équations aux Dérivées Partielles 1987-1988, Exp. No. XIV, École Polytechnique, Palaiseau, 1988. Zbl0664.58005
- [KMG] S. Kim, R. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity 2 (1989), 391-404. Zbl0678.58034
- [LM] J. Llibre and R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynamical Systems 11 (1991), 115-128. Zbl0699.58049
- [MaT] B. Marcus and S. Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, ibid., 129-180. Zbl0725.60071
- [MN] M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc. 456 (1991). Zbl0745.58019
- [MT] M. Misiurewicz and J. Tolosa, Entropy of snakes and the restricted variational principle, Ergodic Theory Dynamical Systems 12 (1992), 791-802. Zbl0784.54025
- [MZ1] M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), 490-506. Zbl0663.58022
- [MZ2] M. Misiurewicz and K. Ziemian, Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math. 137 (1991), 45-52. Zbl0739.58033
- [NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5-71. Zbl0518.58031
- [O] G. Orwell, Animal Farm, Harcourt, Brace and Co., New York, 1946.
- [P] H. Poincaré, Sur les courbes définies par les équations différentielles, in: Oeuvres complètes, Vol. 1, Gauthier-Villars, Paris, 1952, 137-158.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.