Kac-Moody groups, hovels and Littelmann paths
Stéphane Gaussent[1]; Guy Rousseau[1]
- [1] Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2605-2657
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGaussent, Stéphane, and Rousseau, Guy. "Kac-Moody groups, hovels and Littelmann paths." Annales de l’institut Fourier 58.7 (2008): 2605-2657. <http://eudml.org/doc/10387>.
@article{Gaussent2008,
abstract = {We give the definition of a kind of building $\mathcal\{I\}$ for a symmetrizable Kac-Moody group over a field $K$ endowed with a discrete valuation and with a residue field containing $\mathbb\{C\}$. Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if $K=\mathbb\{C\}(\!(t)\!)$, the geodesic segments in $\mathcal\{I\}$, ending in a special vertex and retracting onto a given path $\pi $, are parametrized by a Zariski open subset $P$ of $\mathbb\{C\}^N$. This dimension $N$ is maximal when $\pi $ is a LS path and then $P$ is closely related to some Mirković-Vilonen cycle.},
affiliation = {Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France); Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France)},
author = {Gaussent, Stéphane, Rousseau, Guy},
journal = {Annales de l’institut Fourier},
keywords = {Kac-Moody group; valuated field; building; path},
language = {eng},
number = {7},
pages = {2605-2657},
publisher = {Association des Annales de l’institut Fourier},
title = {Kac-Moody groups, hovels and Littelmann paths},
url = {http://eudml.org/doc/10387},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Gaussent, Stéphane
AU - Rousseau, Guy
TI - Kac-Moody groups, hovels and Littelmann paths
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2605
EP - 2657
AB - We give the definition of a kind of building $\mathcal{I}$ for a symmetrizable Kac-Moody group over a field $K$ endowed with a discrete valuation and with a residue field containing $\mathbb{C}$. Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if $K=\mathbb{C}(\!(t)\!)$, the geodesic segments in $\mathcal{I}$, ending in a special vertex and retracting onto a given path $\pi $, are parametrized by a Zariski open subset $P$ of $\mathbb{C}^N$. This dimension $N$ is maximal when $\pi $ is a LS path and then $P$ is closely related to some Mirković-Vilonen cycle.
LA - eng
KW - Kac-Moody group; valuated field; building; path
UR - http://eudml.org/doc/10387
ER -
References
top- Nicole Bardy, Systèmes de racines infinis, Mém. Soc. Math. Fr. (N.S.) (1996) Zbl0880.17019MR1484906
- Kenneth S. Brown, Buildings, (1989), Springer Zbl0715.20017MR969123
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972), 5-251 Zbl0254.14017MR327923
- Howard Garland, A Cartan decomposition for p-adic loop groups, Math. Ann. 302 (1995), 151-175 Zbl0837.22013MR1329451
- Stéphane Gaussent, Peter Littelmann, LS galleries, the path model and MV cycles, Duke Math. J. 127 (2005), 35-88 Zbl1078.22007MR2126496
- Victor G. Kac, Infinite dimensional Lie algebras, (1990), Cambridge University Press Zbl0716.17022MR1104219
- Victor G. Kac, Dale H. Peterson, Defining relations of certain infinite dimensional groups, Élie Cartan et les mathématiques d’aujourd’hui, Lyon (1984) (1985), 165-208, Astérisque n o hors série Zbl0625.22014
- Misha Kapovich, John J. Millson, A path model for geodesics in euclidean buildings and its applications to representation theory, Geometry, Groups and Dynamics 2 (2008), 405-480 Zbl1147.22011MR2415306
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, (2002), Progress in Math. 204 Birkhäuser Zbl1026.17030MR1923198
- Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346 Zbl0805.17019MR1253196
- Peter Littelmann, Paths and root operators in representation theory, Annals of Math. 142 (1995), 499-525 Zbl0858.17023MR1356780
- Peter Littelmann, The path model, the quantum Frobenius map and standard monomial theory, Algebraic groups and their representations (Cambridge, 1997) 517 (1998), 175-212, Kluwer Acad. Publ., Dordrecht Zbl0938.14031MR1670770
- Ivan Mirković, Kari Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13-24 Zbl0987.14015MR1748284
- Robert Moody, Arturo Pianzola, Lie algebras with triangular decompositions, (1995), Wiley-Interscience, New York Zbl0874.17026MR1323858
- Bertrand Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque (2002) Zbl1001.22018MR1909671
- Mark A. Ronan, Lectures on buildings, (1989), Perspectives in Math. 7 Academic Press Zbl0694.51001
- Guy Rousseau, Groupes de Kac-Moody déployés sur un corps local, immeubles microaffines, Compositio Mathematica 142 (2006), 501-528 Zbl1094.22003MR2218908
- Guy Rousseau, Euclidean buildings, Géométries à courbure négative ou nulle, groupes discrets et rigidité, Grenoble 2004 18 (2008), 77-116, BessièresL.L. Zbl1206.51012
- Guy Rousseau, Groupes de Kac-Moody déployés sur un corps local 2, masures ordonnées, (2008)
- Guy Rousseau, Masures affines, (2008)
- Jacques Tits, Immeubles de type affine, Buildings and the geometry of diagrams, Como (1984) 1181 (1986), 159-190, RosatiL.A.L. Zbl0611.20026MR843391
- Jacques Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. of Algebra 105 (1987), 542-573 Zbl0626.22013MR873684
- Jacques Tits, Twin buildings and groups of Kac-Moody type, Groups combinatorics and geometry, Durham (1990) 165 (1992), 249-286, LiebeckM.M. Zbl0851.22023MR1200265
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.