Kac-Moody groups, hovels and Littelmann paths

Stéphane Gaussent[1]; Guy Rousseau[1]

  • [1] Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2605-2657
  • ISSN: 0373-0956

Abstract

top
We give the definition of a kind of building for a symmetrizable Kac-Moody group over a field K endowed with a discrete valuation and with a residue field containing . Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if K = ( ( t ) ) , the geodesic segments in , ending in a special vertex and retracting onto a given path π , are parametrized by a Zariski open subset P of N . This dimension N is maximal when π is a LS path and then P is closely related to some Mirković-Vilonen cycle.

How to cite

top

Gaussent, Stéphane, and Rousseau, Guy. "Kac-Moody groups, hovels and Littelmann paths." Annales de l’institut Fourier 58.7 (2008): 2605-2657. <http://eudml.org/doc/10387>.

@article{Gaussent2008,
abstract = {We give the definition of a kind of building $\mathcal\{I\}$ for a symmetrizable Kac-Moody group over a field $K$ endowed with a discrete valuation and with a residue field containing $\mathbb\{C\}$. Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if $K=\mathbb\{C\}(\!(t)\!)$, the geodesic segments in $\mathcal\{I\}$, ending in a special vertex and retracting onto a given path $\pi $, are parametrized by a Zariski open subset $P$ of $\mathbb\{C\}^N$. This dimension $N$ is maximal when $\pi $ is a LS path and then $P$ is closely related to some Mirković-Vilonen cycle.},
affiliation = {Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France); Institut Élie Cartan Unité Mixte de Recherche 7502 Nancy-Université, CNRS, INRIA Boulevard des Aiguillettes BP 239 54506 Vandœuvre-lès-Nancy cedex (France)},
author = {Gaussent, Stéphane, Rousseau, Guy},
journal = {Annales de l’institut Fourier},
keywords = {Kac-Moody group; valuated field; building; path},
language = {eng},
number = {7},
pages = {2605-2657},
publisher = {Association des Annales de l’institut Fourier},
title = {Kac-Moody groups, hovels and Littelmann paths},
url = {http://eudml.org/doc/10387},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Gaussent, Stéphane
AU - Rousseau, Guy
TI - Kac-Moody groups, hovels and Littelmann paths
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2605
EP - 2657
AB - We give the definition of a kind of building $\mathcal{I}$ for a symmetrizable Kac-Moody group over a field $K$ endowed with a discrete valuation and with a residue field containing $\mathbb{C}$. Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if $K=\mathbb{C}(\!(t)\!)$, the geodesic segments in $\mathcal{I}$, ending in a special vertex and retracting onto a given path $\pi $, are parametrized by a Zariski open subset $P$ of $\mathbb{C}^N$. This dimension $N$ is maximal when $\pi $ is a LS path and then $P$ is closely related to some Mirković-Vilonen cycle.
LA - eng
KW - Kac-Moody group; valuated field; building; path
UR - http://eudml.org/doc/10387
ER -

References

top
  1. Nicole Bardy, Systèmes de racines infinis, Mém. Soc. Math. Fr. (N.S.) (1996) Zbl0880.17019MR1484906
  2. Kenneth S. Brown, Buildings, (1989), Springer Zbl0715.20017MR969123
  3. F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972), 5-251 Zbl0254.14017MR327923
  4. Howard Garland, A Cartan decomposition for p-adic loop groups, Math. Ann. 302 (1995), 151-175 Zbl0837.22013MR1329451
  5. Stéphane Gaussent, Peter Littelmann, LS galleries, the path model and MV cycles, Duke Math. J. 127 (2005), 35-88 Zbl1078.22007MR2126496
  6. Victor G. Kac, Infinite dimensional Lie algebras, (1990), Cambridge University Press Zbl0716.17022MR1104219
  7. Victor G. Kac, Dale H. Peterson, Defining relations of certain infinite dimensional groups, Élie Cartan et les mathématiques d’aujourd’hui, Lyon (1984) (1985), 165-208, Astérisque n o hors série Zbl0625.22014
  8. Misha Kapovich, John J. Millson, A path model for geodesics in euclidean buildings and its applications to representation theory, Geometry, Groups and Dynamics 2 (2008), 405-480 Zbl1147.22011MR2415306
  9. Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, (2002), Progress in Math. 204 Birkhäuser Zbl1026.17030MR1923198
  10. Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346 Zbl0805.17019MR1253196
  11. Peter Littelmann, Paths and root operators in representation theory, Annals of Math. 142 (1995), 499-525 Zbl0858.17023MR1356780
  12. Peter Littelmann, The path model, the quantum Frobenius map and standard monomial theory, Algebraic groups and their representations (Cambridge, 1997) 517 (1998), 175-212, Kluwer Acad. Publ., Dordrecht Zbl0938.14031MR1670770
  13. Ivan Mirković, Kari Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13-24 Zbl0987.14015MR1748284
  14. Robert Moody, Arturo Pianzola, Lie algebras with triangular decompositions, (1995), Wiley-Interscience, New York Zbl0874.17026MR1323858
  15. Bertrand Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque (2002) Zbl1001.22018MR1909671
  16. Mark A. Ronan, Lectures on buildings, (1989), Perspectives in Math. 7 Academic Press Zbl0694.51001
  17. Guy Rousseau, Groupes de Kac-Moody déployés sur un corps local, immeubles microaffines, Compositio Mathematica 142 (2006), 501-528 Zbl1094.22003MR2218908
  18. Guy Rousseau, Euclidean buildings, Géométries à courbure négative ou nulle, groupes discrets et rigidité, Grenoble 2004 18 (2008), 77-116, BessièresL.L. Zbl1206.51012
  19. Guy Rousseau, Groupes de Kac-Moody déployés sur un corps local 2, masures ordonnées, (2008) 
  20. Guy Rousseau, Masures affines, (2008) 
  21. Jacques Tits, Immeubles de type affine, Buildings and the geometry of diagrams, Como (1984) 1181 (1986), 159-190, RosatiL.A.L. Zbl0611.20026MR843391
  22. Jacques Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. of Algebra 105 (1987), 542-573 Zbl0626.22013MR873684
  23. Jacques Tits, Twin buildings and groups of Kac-Moody type, Groups combinatorics and geometry, Durham (1990) 165 (1992), 249-286, LiebeckM.M. Zbl0851.22023MR1200265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.